Outline 第四讲 分离变量法( 北京大学物理学院 2007年春
Outline 1 o ù ©lCþ{(n) ®ÆÔnÆ 2007cS C. S. Wu 1où ©lCþ{(n)
Outline 讲授要点 ③非齐次稳定问题 例 方法的进一步发展 非齐次边界条件的齐次化 基本思路 特殊技巧:方程及边界条件同时齐次化
Outline ùÇ: 1 àg½¯K «~ {?ÚuÐ 2 àg>.^àgz Äg´ AÏE|µ§9>.^Óàgz 3 ¡IXeLaplaceÎ ÎIXeLaplaceÎ ¥IXeLaplaceÎ C. S. Wu 1où ©lCþ{(n)
Outline 讲授要点 ③非齐次稳定问题 例 方法的进一步发展 ②非齐次边界条件的齐次化 基本思路 特殊技巧:方程及边界条件同时齐次化 ③正交曲面坐标系下的 Laplace算符 柱坐标系下的 Laplace算符 球坐标系下的上 aplace算符
Outline ùÇ: 1 àg½¯K «~ {?ÚuÐ 2 àg>.^àgz Äg´ AÏE|µ§9>.^Óàgz 3 ¡IXeLaplaceÎ ÎIXeLaplaceÎ ¥IXeLaplaceÎ C. S. Wu 1où ©lCþ{(n)
Outline 讲授要点 ③非齐次稳定问题 例 方法的进一步发展 ②非齐次边界条件的齐次化 基本思路 特殊技巧:方程及边界条件同时齐次化 ③正交曲面坐标系下的 Laplace算符 柱坐标系下的 Laplace算符 球坐标系下的 Laplace算符
Outline ùÇ: 1 àg½¯K «~ {?ÚuÐ 2 àg>.^àgz Äg´ AÏE|µ§9>.^Óàgz 3 ¡IXeLaplaceÎ ÎIXeLaplaceÎ ¥IXeLaplaceÎ C. S. Wu 1où ©lCþ{(n)
References 吴崇试,《数学物理方法》,§14.6,15.1,15.2
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates References ÇÂÁ§5êÆÔn{6§§14.6, 15.1, 15.2 ù&§5êÆÔn{6§§8.3 nÎ!X1Á§5êÆÔn{6§§10.4, 12.1 C. S. Wu 1où ©lCþ{(n)
References 吴崇试,《数学物理方法》,814.6,15.1,15.2 梁昆淼,《数学物理方法》,§8.3 光炯,《数学物理
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates References ÇÂÁ§5êÆÔn{6§§14.6, 15.1, 15.2 ù&§5êÆÔn{6§§8.3 nÎ!X1Á§5êÆÔn{6§§10.4, 12.1 C. S. Wu 1où ©lCþ{(n)
References 吴崇试,《数学物理方法》,814.6,15.1,15.2 梁昆淼,《数学物理方法》,§8.3 胡嗣柱、倪光炯,《数学物理方法》,§10.4, 12.1
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates References ÇÂÁ§5êÆÔn{6§§14.6, 15.1, 15.2 ù&§5êÆÔn{6§§8.3 nÎ!X1Á§5êÆÔn{6§§10.4, 12.1 C. S. Wu 1où ©lCþ{(n)
ent of the Solution Approach 讲授要点 ③非齐次稳定问题 例 方法的进一步发展 非齐次边界条件的齐次化 基本思路 特殊技巧:方程及边界条件同时齐次化 ③正交曲面坐标系下的 Laplace算符 。柱坐标系下的 aplace算符 球坐标系下的 Laplace算符
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Illustrative Example Further Development of the Solution Approach ùÇ: 1 àg½¯K «~ {?ÚuÐ 2 àg>.^àgz Äg´ AÏE|µ§9>.^Óàgz 3 ¡IXeLaplaceÎ ÎIXeLaplaceÎ ¥IXeLaplaceÎ C. S. Wu 1où ©lCþ{(n)
ent of the Solution Approach 矩形区域内的稳定问题 设有定解问题 a2u a-u=f(a, y) 0x2 0<x<a,0<y<b u=0=0=0=00≤y≤b 0 u=00≤x≤ 用按相应齐次问题本征函数展开的办法求解
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Illustrative Example Further Development of the Solution Approach Ý/«S½¯K k½)¯K ∂ 2u ∂x2 + ∂ 2u ∂y2 = f(x, y) 0 < x < a, 0 < y < b u x=0 = 0 u x=a = 0 0 ≤ y ≤ b u y=0 = 0 u y=b = 0 0 ≤ x ≤ a ^UAàg¯K¼êÐm{¦) C. S. Wu 1où ©lCþ{(n)
ent of the Solution Approach 矩形区域内的稳定问题 设有定解问题 a2u a-u=f(a, y) 0x2 0<x<a,0<y<b u=0=0=0=00≤y≤b 0 u=00≤x≤ 可设 (,y)=∑ nnt Yn(ysin-g f(a, y) ∑ gn(y)
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Illustrative Example Further Development of the Solution Approach Ý/«S½¯K k½)¯K ∂ 2u ∂x2 + ∂ 2u ∂y2 = f(x, y) 0 < x < a, 0 < y < b u x=0 = 0 u x=a = 0 0 ≤ y ≤ b u y=0 = 0 u y=b = 0 0 ≤ x ≤ a u(x, y) = X∞ n=1 Yn(y) sin nπ a x f(x, y) = X∞ n=1 gn(y) sin nπ a x C. S. Wu 1où ©lCþ{(n)