第 讲 分离变量法(二) 北京大学物理学院 2007年春
Outline 1 n ù ©lCþ{() ®ÆÔnÆ 2007cS C. S. Wu 1nù ©lCþ{()
讲授要点 ③矩形区域内的稳定问题 ③两端固定弦的受迫振动 方程及边界条件同时齐次化 按相应齐次问题本征函数展开
Outline ùÇ: 1 Ý/«S½¯K 2 üà½uÉ½Ä §9>.^Óàgz UAàg¯K¼êÐm C. S. Wu 1nù ©lCþ{()
讲授要点 ③矩形区域内的稳定问题 ②两端固定弦的受迫振动 方程及边界条件同时齐次化 按相应齐次问题本征函数展开
Outline ùÇ: 1 Ý/«S½¯K 2 üà½uÉ½Ä §9>.^Óàgz UAàg¯K¼êÐm C. S. Wu 1nù ©lCþ{()
References 吴崇试,《数学物理方法》,§14.3,14.5
Steady State Problems Forced Vibration in a String Fixed at Both Ends References ÇÂÁ§5êÆÔn{6§§14.3, 14.5 ù&§5êÆÔn{6§§8.2 nÎ!X1Á§5êÆÔn{6§§10.5 C. S. Wu 1nù ©lCþ{()
References 吴崇试,《数学物理方法》,§14.3,14.5 梁昆淼,《数学物理方法》,§8.2 光炯,《数学物理方法
Steady State Problems Forced Vibration in a String Fixed at Both Ends References ÇÂÁ§5êÆÔn{6§§14.3, 14.5 ù&§5êÆÔn{6§§8.2 nÎ!X1Á§5êÆÔn{6§§10.5 C. S. Wu 1nù ©lCþ{()
References 吴崇试,《数学物理方法》,§14.3,14.5 梁昆淼,《数学物理方法》,§8.2 胡嗣柱、倪光炯,《数学物理方法》,§10.5
Steady State Problems Forced Vibration in a String Fixed at Both Ends References ÇÂÁ§5êÆÔn{6§§14.3, 14.5 ù&§5êÆÔn{6§§8.2 nÎ!X1Á§5êÆÔn{6§§10.5 C. S. Wu 1nù ©lCþ{()
矩形区域内的稳定问题
Steady State Problems Forced Vibration in a String Fixed at Both Ends Ý/«S½¯K C. S. Wu 1nù ©lCþ{()
矩形区域内的稳定问题 分离变量法乜适用于热传导方程和稳定问题(例 如, Laplace方程)的定解问题 00<x<
Steady State Problems Forced Vibration in a String Fixed at Both Ends Ý/«S½¯K ©lCþ{·^u9D§Ú½¯K(~ X§Laplace§)½)¯K ∂ 2u ∂x2 + ∂ 2u ∂y2 = 0 0 < x < a, 0 < y < b u x=0 = 0 ∂u ∂x x=a = 0 0 ≤ y ≤ b u y=0 = f(x) ∂u ∂y y=b = 0 0 ≤ x ≤ a E^©lCþ{¦) E,Uìþ¡o(oIOÚ½¦) C. S. Wu 1nù ©lCþ{()
矩形区域内的稳定问题 分离变量法乜适用于热传导方程和稳定问题(例 如, Laplace方程)的定解问题 a2u a2 ax2 ay2 0<x<a,0<y<b 00≤y≤b au l=0=f(a) 00<x<
Steady State Problems Forced Vibration in a String Fixed at Both Ends Ý/«S½¯K ©lCþ{·^u9D§Ú½¯K(~ X§Laplace§)½)¯K ∂ 2u ∂x2 + ∂ 2u ∂y2 = 0 0 < x < a, 0 < y < b u x=0 = 0 ∂u ∂x x=a = 0 0 ≤ y ≤ b u y=0 = f(x) ∂u ∂y y=b = 0 0 ≤ x ≤ a E^©lCþ{¦) E,Uìþ¡o(oIOÚ½¦) C. S. Wu 1nù ©lCþ{()
矩形区域内的稳定问题 分离变量法乜适用于热传导方程和稳定问题(例 如, Laplace方程)的定解问题 a2u a2 0<x<a,0<y<b ax2 ay2 000 00≤y≤b au l=0=f(a) 00<x< 仍可用分离变量法求解 。仍然按照上面总结的四个标准步骤求解
Steady State Problems Forced Vibration in a String Fixed at Both Ends Ý/«S½¯K ©lCþ{·^u9D§Ú½¯K(~ X§Laplace§)½)¯K ∂ 2u ∂x2 + ∂ 2u ∂y2 = 0 0 < x < a, 0 < y < b u x=0 = 0 ∂u ∂x x=a = 0 0 ≤ y ≤ b u y=0 = f(x) ∂u ∂y y=b = 0 0 ≤ x ≤ a E^©lCþ{¦) E,Uìþ¡o(oIOÚ½¦) C. S. Wu 1nù ©lCþ{()