傅里叶变换
傅里叶变换
● 第五讲 傅里十变换的性质
第五讲 傅里叶变换的性质
1.傅里叶变换的性质 1.线性性质: 设F(w)=F[f(t)],G(o)=F[g(t)],B为常数,则 F[af(t)+Bg(t)]=aF(ω)+BG(ω) F-1[aF(@)+BG(@)]=af(t)+Bg(t)
1.傅里叶变换的性质 1. 线性性质: 设𝑭(𝝎)=𝓕 𝒇 𝒕 ,𝑮 𝝎 = 𝓕[𝒈 𝒕 ],𝜶,𝜷为常数,则 𝓕 𝜶𝒇 𝒕 + 𝜷𝒈(𝒕) = 𝜶𝑭 𝝎 + 𝜷𝑮(𝝎) 𝓕−𝟏 𝜶𝑭 𝝎 + 𝜷𝑮(𝝎) = 𝜶𝒇 𝒕 + 𝜷𝒈(𝒕)
举例 例1.求下列函数的傅里叶变换 (12sin2t 解:F(w)=F[2sin2t]=2πj[6(w+2)-6(w-2)] (2)3c0S4t 解:F(w)=F[3c0s4t]=3π[6(w+4)+6(w-4)] (3)2cos4t 3sin2t 解:F(w)=F[2cos4t+3sin2t] =2π[6(ω+4)+6(w-4)]+3πj[6(w+2)-6(w-2)]
举例 例1.求下列函数的傅里叶变换 𝟏 𝟐𝒔𝒊𝒏𝟐𝒕 𝟐 𝟑𝒄𝒐𝒔𝟒𝒕 𝟑 𝟐𝒄𝒐𝒔𝟒𝒕 + 𝟑𝒔𝒊𝒏𝟐𝒕 解:𝑭 𝝎 = 𝓕 𝟐𝒔𝒊𝒏𝟐𝒕 = 𝟐𝝅𝒋[𝜹 𝝎 + 𝟐 − 𝜹 𝝎 − 𝟐 ] 解:𝑭 𝝎 = 𝓕 𝟑𝒄𝒐𝒔𝟒𝒕 = 𝟑𝝅[𝜹 𝝎 + 𝟒 + 𝜹 𝝎 − 𝟒 ] 解:𝑭 𝝎 = 𝓕 𝟐𝒄𝒐𝒔𝟒𝒕 + 𝟑𝒔𝒊𝒏𝟐𝒕 = 𝟐𝝅 𝜹 𝝎 + 𝟒 + 𝜹 𝝎 − 𝟒 + 𝟑𝝅𝒋[𝜹 𝝎 + 𝟐 − 𝜹 𝝎 − 𝟐 ]
举例 例2.求下列函数的傅里叶变换 (1)f(t)=sin2t·u(t) sin2t e2jt-e-2jt 2j 解:Tu(l=Ju(④-dt=高+π6(ol r训= u(t)e-jotdt -u(t)[e-Jw-2%-e-J+2jdt =7d2+π6(u-2)-72π6u+2] 42+号r[6(w-2)-w+2]
举例 例2.求下列函数的傅里叶变换 𝟏 𝒇 𝒕 = 𝒔𝒊𝒏𝟐𝒕 ∙ 𝒖(𝒕) 解: s𝒊𝒏𝟐𝒕 = 𝒆 𝟐𝒋𝒕−𝒆 −𝟐𝒋𝒕 𝟐𝒋 , ∞− = (��)�� �� +∞ 𝒖(𝒕) 𝒆 −𝒋𝝎𝒕𝒅𝒕 = 𝟏 𝒋𝝎 + 𝝅𝜹(𝝎) ∞− = (��)�� �� +∞ 𝒆 𝟐𝒋𝒕−𝒆 −𝟐𝒋𝒕 𝟐𝒋 𝒖(𝒕) 𝒆 −𝒋𝝎𝒕𝒅𝒕 = 𝟏 𝟐𝒋 [ 𝟏 𝒋(𝝎−𝟐) + 𝝅𝜹(𝝎 − 𝟐) − 𝟏 𝒋 𝝎+𝟐 − 𝝅𝜹(𝝎 + 𝟐)] = 𝟏 ∞− �𝟐� +∞ 𝒖 𝒕 [ 𝒆 −𝒋(𝝎−𝟐)𝒕 − 𝒆 −𝒋 𝝎+𝟐 𝒕 ]𝒅𝒕 = 𝟐 𝟒−𝝎𝟐 + 𝟏 𝟐𝒋 𝝅[𝜹(𝝎 − 𝟐) − 𝜹(𝝎 + 𝟐)]
ejoot+e-jwot (2)f(t)=cos@ot.u(t)cosaot= 2 解:r[u(=u()e-/odt=六+πdo) (()e-etdt =u(t)[e-)+e-tdt =io2on+π(u-un)+7atn+π6w+wol 2e+n6u-o)+iu+ao】
𝟐 𝒇 𝒕 = 𝒄𝒐𝒔𝝎𝟎𝒕 ∙ 𝒖(𝒕) 解: c𝐨𝐬𝝎𝟎𝒕 = 𝒆 𝒋𝝎𝟎 𝒕+𝒆 −𝒋𝝎𝟎 𝒕 𝟐 , ∞− = (��)�� �� +∞ 𝒖(𝒕) 𝒆 −𝒋𝝎𝒕𝒅𝒕 = 𝟏 𝒋𝝎 + 𝝅𝜹(𝝎) ∞− = (��)�� �� +∞ 𝒆 𝒋𝝎𝟎 𝒕+𝒆 −𝒋𝝎𝟎 𝒕 𝟐 𝒖(𝒕) 𝒆 −𝒋𝝎𝒕𝒅𝒕 = 𝟏 𝟐 [ 𝟏 𝒋 𝝎−𝝎𝟎 + 𝝅𝜹 𝝎 − 𝝎𝟎 + 𝟏 𝒋 𝝎+𝝎𝟎 + 𝝅𝜹(𝝎 + 𝝎𝟎)] = 𝟏 𝟐 ∞− +∞ 𝒖 𝒕 [ 𝒆 −𝒋(𝝎−𝝎𝟎)𝒕 + 𝒆 −𝒋 𝝎+𝝎𝟎 𝒕 ]𝒅𝒕 = 𝝎𝒋 𝝎0 2−𝝎𝟐 + 𝟏 𝟐 𝝅 𝜹 𝝎 − 𝝎𝟎 + 𝜹 𝝎 + 𝝎𝟎
2.1位移性质: 设F(w)=F[f(t)],to,wo为常实数,则 F[f(t-to)]=e-jotoF(@). -00 证:F[ft-to]=nft-to)etdt +00 -f(u)e-jo(wtdu 十00 -etf(u)e-udu-e-hotoF(@)
2.1 位移性质: 设𝑭(𝝎)=𝓕 𝒇 𝒕 , 𝒕𝟎, 𝝎𝟎为常实数,则 𝓕 𝒇 𝒕 − 𝒕𝟎 = 𝒆 −𝒋𝝎𝒕𝟎𝑭 𝝎 . 证: 𝓕 𝒇 𝒕 − 𝒕𝟎 = න −∞ +∞ 𝒇(𝒕 − 𝒕𝟎) 𝒆 −𝒋𝝎𝒕𝒅𝒕 = න −∞ +∞ 𝒇(𝒖) 𝒆 −𝒋𝝎(𝒖+𝒕𝟎)𝒅𝒖 = 𝒆 −𝒋𝝎𝒕𝟎 න −∞ +∞ 𝒇(𝒖) 𝒆 −𝒋𝝎𝒖𝒅𝒖 = 𝒆 −𝒋𝝎𝒕𝟎𝑭(𝝎)
2.2位移性质: 设F(ω)=F[f(t)],to,ωo为实常数,则 F-1[F(ω-wo)】=ejwotf(t). 证:P-lFw-ool=元Pu-)uo 十00 F(u)ei(uto)du n十00 ejwot F(u)ejutdu elwotf(t) -00
𝓕−𝟏 𝑭 𝝎 − 𝝎𝟎 = 𝟏 𝟐𝝅 න −∞ +∞ 𝑭(𝝎 − 𝝎𝟎) 𝒆 𝒋𝝎𝒕𝐝𝝎 = 𝟏 𝟐𝝅 න −∞ +∞ 𝑭(𝒖) 𝒆 𝒋(𝒖+𝝎𝟎)𝒕𝐝𝒖 = 𝒆 𝒋𝝎𝟎𝒕 𝟏 𝟐𝝅 න −∞ +∞ 𝑭(𝒖) 𝒆 𝒋𝒖𝒕𝐝𝒖 = 𝒆 𝒋𝝎𝟎𝒕𝒇(𝒕) 2.2 位移性质: 设𝑭(𝝎)=𝓕 𝒇 𝒕 , 𝒕𝟎, 𝝎𝟎为实常数,则 𝓕−𝟏 𝑭 𝝎 − 𝝎𝟎 = 𝒆 𝒋𝝎𝟎𝒕𝒇 𝒕 . 证:
举例 例1:已知G(w)=g+ja+o (B>0,ω0为实常数). 求g(t)=F-1[G(ω)l. 解:g④=T-1[G(w]=eot.Fr12a】 11=68 a0-6nt28 ,t<0
举例 解:𝒈 𝒕 = 𝓕−𝟏 [𝑮(𝝎)] = 𝒆 −𝒋𝝎𝟎𝒕 ∙ 𝓕−𝟏 [ 𝟏 𝜷+𝒋𝝎 ] ∴ 𝒈 𝒕 = ቊ 𝒆 − 𝜷+𝒋𝝎𝟎 𝒕 , 𝒕 ≥ 𝟎 𝟎 , 𝒕 𝟎, 𝝎𝟎为实常数), 求𝒈 𝒕 = 𝓕−𝟏 [𝑮(𝝎)]. ∵ 𝓕−𝟏 [ 𝟏 𝜷+𝒋𝝎 ]= = ቊ 𝒆 −𝜷𝒕 , 𝒕 ≥ 𝟎 𝟎 , 𝒕 < 𝟎
基础练习 1.已知c(o))=4n0求g④=F-1G(w小 1 解:g()=F-1[G(ω]=et.F-1[4+a] e4+3)t.t三0 ,t<0. 2.已知G(ω)= 0求g)=T-1[Gw 解:g(o=F-1[G(ω]=e2t.F-1【3+iaJ ={e-0tt≥0 ,t<0
基础练习 1.已知𝐆 𝝎 = 𝟏 𝟒+𝒋(𝝎+𝟑) ,求𝒈 𝒕 = 𝓕−𝟏 [𝑮(𝝎)]. 2.已知𝐆 𝝎 = 𝟏 𝟑+𝒋(𝝎−𝟐) ,求𝒈 𝒕 = 𝓕−𝟏 [𝑮(𝝎)]. 解:𝒈 𝒕 = 𝓕−𝟏 [𝑮(𝝎)] = 𝒆 −𝒋𝟑𝒕 ∙ 𝓕−𝟏 [ 𝟏 𝟒+𝒋𝝎 ] = ቊ 𝒆 −(𝟒+𝟑𝒋)𝒕 , 𝒕 ≥ 𝟎 𝟎 , 𝒕 < 𝟎. 解:𝒈 𝒕 = 𝓕−𝟏 [𝑮(𝝎)] = 𝒆 𝒋𝟐𝒕 ∙ 𝓕−𝟏 [ 𝟏 𝟑+𝒋𝝎 ] = ቊ 𝒆 −(𝟑−𝟐𝒋)𝒕 , 𝒕 ≥ 𝟎 𝟎 , 𝒕 < 𝟎