傅里叶变换
傅里叶变换
第六讲 傅里十变换的性质
第六讲 傅里叶变换的性质
1.傅里叶变换的性质 东 4.1微分性质: ①若imf(t)=0,则F[f'(t)]=jw·F[f(t)] ②一般的nf(④=0(k=0,1,2,n-1)则 F[f'"(t)]=Uw)2·F[f(t)] Ff"(t)]=Uw)3·F[f(t)] Ff(n)(t)=(jw)n.F[f(t)]
4.1 微分性质: ① 若 𝐥𝐢𝐦 𝒕 →+∞ 𝒇 𝒕 = 𝟎, 则 𝓕 𝒇′ 𝒕 =𝐣𝝎 ∙ 𝓕[𝒇 𝒕 ] ② 一般的 𝐥𝐢𝐦 𝒕 →+∞ 𝒇 𝒌 𝒕 = 𝟎 𝒌 = 𝟎, 𝟏, 𝟐, . , 𝒏 − 𝟏 则 𝓕 𝒇 (𝒏) 𝒕 =(𝐣𝝎) 𝒏 ∙ 𝓕[𝒇 𝒕 ] 𝓕 𝒇′′ 𝒕 =(𝒋𝝎) 𝟐 ∙ 𝓕 𝒇(𝒕) 𝓕 𝒇′′′ 𝒕 =(𝒋𝝎) 𝟑 ∙ 𝓕 𝒇 𝒕 ⋯ 1.傅里叶变换的性质
证:①当lt|→+oo时,f(t)ejwt|=lf(t)川→0,得f(t)ejwt→0. F[f'(tl=∫e-Jotdf(e) -f(t)e-Jwt+jf(t)e-Jwtdt-jwFlF(t] ②同理:当1imf(t)=0(k=0,1,2,n-1)则 t→+0∞ F[f"(t)]=jωF[f'(t)]=Uw)2·F[f(t)] F[f'"(t)]=jωF[f'"(t)]=Uω)2·F[f'(t)]=0ω)3·Ff(t)] Ff()(t)]=(jw)m.F[f(t)]
证:① 当 𝒕 → +∞时, 𝒇 𝒕 𝒆 −𝒋𝝎𝒕 = 𝒇 𝒕 → 𝟎, 得𝒇 𝒕 𝒆 −𝒋𝝎𝒕 → 𝟎. ∞−= �� ′�� �� +∞ 𝒆 −𝒋𝝎𝒕𝒅𝒇(𝒕) = 𝒇 𝒕 𝒆 −𝒋𝝎𝒕 ฬ +∞ −∞ ∞− �𝒋� + +∞ 𝒇(𝒕)𝒆 −𝒋𝝎𝒕𝒅𝒕 = 𝐣𝝎𝓕[𝒇 𝒕 ] 𝓕 𝒇′′ 𝒕 =𝐣𝝎𝓕 𝒇′(𝒕) = (𝒋𝝎) 𝟐 ∙ 𝓕 𝒇(𝒕) 𝓕 𝒇′′′ 𝒕 =𝐣𝝎𝓕 𝒇′′(𝒕) = (𝒋𝝎) 𝟐 ∙ 𝓕 𝒇 ′ 𝒕 = (𝒋𝝎) 𝟑 ∙ 𝓕 𝒇 𝒕 ② 同理:当 𝐥𝐢𝐦 𝒕 →+∞ 𝒇 𝒌 𝒕 = 𝟎 𝒌 = 𝟎, 𝟏, 𝟐, . , 𝒏 − 𝟏 则 𝓕 𝒇 (𝒏) 𝒕 =(𝐣𝝎) 𝒏 ∙ 𝓕[𝒇 𝒕 ] ⋯
4.2像函数的导数公式:F(ω)=F[f(t)] ω=-jr[tf(t小, ② dw )=(-j)"F[t"f(t)] dw2 证:① dF(ω) de-Jof()dt do dw je-jwttf(t)dt ② (2e-Jwtt2f(t)dt=(-j)2Ft2f(t)] da2 =(-)n F[tf(t)]. don 常用公式 a0=tf
4.2 像函数的导数公式: ① 𝒅𝑭(𝝎) 𝒅𝝎 = ∞− �� +∞ 𝒆 −𝒋𝝎𝒕𝒇 𝒕 𝒅𝒕 𝒅𝝎 ∞− ��−= +∞ 𝒆 −𝒋𝝎𝒕 𝒕𝒇 𝒕 𝒅𝒕 ① 𝒅𝑭(𝝎) 𝒅𝝎 = −𝒋 𝓕 𝒕𝒇 𝒕 , ② 𝒅 𝒏𝑭(𝝎) 𝒅𝝎𝟐 = (−𝒋) 𝒏 𝓕[𝒕 𝒏𝒇(𝒕)] ② 𝒅 𝟐𝑭(𝝎) 𝒅𝝎𝟐 =(−𝒋) ∞− �� +∞ 𝒆 −𝒋𝝎𝒕 𝒕 𝟐𝒇 𝒕 𝒅𝒕 = (−𝒋) 𝟐 𝓕[𝒕 𝟐𝒇 𝒕 ] 证: ⋯ 𝒅 𝒏𝑭(𝝎) 𝒅𝝎𝒏 = (−𝒋) 𝒏 𝓕 𝒕 𝒏𝒇 𝒕 . 1 (−𝒋) 𝒏 𝒅 𝒏𝑭(𝝎) 𝒅𝝎𝒏 = 𝓕[𝒕 𝒏 常用公式 𝒇(𝒕)] 𝑭(𝝎)=𝓕 𝒇 𝒕
举例 例1.求下列函数的傅里叶变换 (1)f(t)=eioot.tu(t) 十00 解: Felootu(]=eloot .ut)e-rdt =7u2on+π6(a-anl 1 o2trw-aolr7oo+n6w-unl Fleiootu(t) -1 f(t]=-万 dω (0-wo)2+j6'(w-wo)
举例 例1.求下列函数的傅里叶变换 𝟏 𝒇 𝒕 = 𝒆 𝒋𝝎𝟎𝒕 ∙ 𝒕𝒖 𝒕 解: 𝓕 𝒆 𝒋𝝎𝟎𝒕𝒖(𝒕) = න −∞ +∞ 𝒆 𝒋𝝎𝟎𝒕 ∙ 𝒖 𝒕 𝒆 −𝒋𝝎𝒕𝒅𝒕 𝓕 𝒇(𝒕) = − 𝟏 𝒋 𝒅𝓕 𝒆 𝒋𝝎𝟎𝒕𝒖 𝒕 𝒅𝝎 = −𝟏 (𝝎 − 𝝎𝟎) 𝟐 + 𝝅𝒋𝜹′(𝝎 − 𝝎𝟎) = 𝟏 𝒋(𝝎−𝝎𝟎) + 𝝅𝜹(𝝎 − 𝝎𝟎) [ 𝟏 𝒋(𝝎−𝝎𝟎) + 𝝅𝜹(𝝎 − 𝝎𝟎)] ′ = −𝟏 𝒋(𝝎−𝝎𝟎) 𝟐 + 𝝅𝜹′(𝝎 − 𝝎𝟎)
基础练习 1.求下列函数的傅里叶变换 (1)f(t)=t·u(t) 解:Fu(l=u(因=元+π6Ca-F(o) rf(]=-P'(ω)=-品+π6(州 =-后+mω训 3、 -方πd'(ω) 1 u2+πj8'(w)
基础练习 1.求下列函数的傅里叶变换 𝟏 𝒇 𝒕 = 𝒕 ∙ 𝒖(𝒕) ∞− = (��)�� �� :解 +∞ 𝒖(𝒕) 𝒆 −𝒋𝝎𝒕𝒅𝒕 = 𝟏 𝒋𝝎 + 𝝅𝜹(𝝎)=𝑭(𝝎) 𝓕 𝒇(𝒕) = − 𝟏 𝒋 𝑭′(𝝎)= − 𝟏 𝒋 [ 𝟏 𝒋𝝎 + 𝝅𝜹(𝝎)]’ = − 𝟏 𝒋 [ −𝟏 𝒋𝝎𝟐 + 𝝅𝜹′(𝝎)] = − 𝟏 𝝎𝟐 − 𝟏 𝒋 𝝅𝜹′(𝝎) = − 𝟏 𝝎𝟐 + 𝝅𝒋𝜹′(𝝎)
基础练习 (2)f(t)=t·sint +0∞ 解:F[snt]= sint e-jotdt =πj[6(ω+1)-6(ω-1)] 1 Ff(]=-万j[6'(w+1)-0'(w-1)] =-π[8'(w+1)-6'(ω-1)] =π[6'(ω-1)-8(w+1)]
基础练习 𝟐 𝒇 𝒕 = 𝒕 ∙ 𝒔𝒊𝒏𝒕 解: 𝓕 𝒔𝒊𝒏𝒕 = න −∞ +∞ 𝒔𝒊𝒏𝒕 𝒆 −𝒋𝝎𝒕𝒅𝒕 𝓕 𝒇(𝒕) =− 𝟏 𝒋 𝝅𝒋[𝜹 ′ 𝝎 + 𝟏) − 𝜹 ′ (𝝎 − 𝟏) = −𝝅[𝜹 ′ 𝝎 + 𝟏) − 𝜹 ′ (𝝎 − 𝟏) = 𝝅[𝜹 ′ 𝝎 − 𝟏) − 𝜹 ′ (𝝎 + 𝟏) = 𝝅𝒋[𝜹 𝝎 + 𝟏 − 𝜹 𝝎 − 𝟏 ]
(3)f(t)=t·cos2t r十0∞ 解: F[cos2t]=cos2te-kotdt =π[6(ω+2)+6(w-2)] 1 Ff(]=-万π[6'(ω+1)+6'(w-2] =j[8'(ω+1)+6(ω-2)]
𝟑 𝒇 𝒕 = 𝒕 ∙ 𝒄𝒐𝒔𝟐𝒕 解: 𝓕 𝒄𝒐𝒔𝟐𝒕 = න −∞ +∞ 𝒄𝒐𝒔𝟐𝒕 𝒆 −𝒋𝝎𝒕𝒅𝒕 𝓕 𝒇(𝒕) = − 𝟏 𝒋 𝝅[𝜹′(𝝎 + 𝟏)+𝜹′ 𝝎 − 𝟐 ] = 𝝅[𝜹 𝝎 + 𝟐 + 𝜹 𝝎 − 𝟐 ] = 𝝅𝒋[𝜹′(𝝎 + 𝟏)+𝜹′ 𝝎 − 𝟐 ]
5.积分性质: 设g(=ft)dt若吧g(④=0,则F[g(]=元Ff(@ 证:g'=fo)dr=fd F[g'(t)]=jω·F[g(t)] 悬Ff(]=F[g(]
5. 积分性质: 设g(t)=∞− 𝒕 𝒇 𝒕 𝒅𝒕若 𝐥𝐢𝐦 𝒕→+∞ 𝒈 𝒕 = 𝟎, 则 𝓕 𝒈 𝒕 = 𝟏 𝒋𝝎 𝓕[𝒇 𝒕 ] 证: 𝒈′ 𝒕 = [න −∞ 𝒕 𝒇 𝒕 𝒅𝒕]′ = 𝒇(𝒕) 𝓕 𝒈′ 𝒕 =𝒋𝝎 ∙ 𝓕[𝒈 𝒕 ] 𝟏 𝒋𝝎 𝓕 𝒇 𝒕 =𝓕[𝒈 𝒕 ]