免费下载网址ht;/jiaoxue5uys168.com 广东省珠海十中九年级数学上册《244弧长和扇形面积(2)》教 案 教学内容 1.圆锥母线的概念 2.圆锥侧面积的计算方法 3.计算圆锥全面积的计算方法 4.应用它们解决实际问题 教学目标 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会 应用公式解决问题 通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及 应用它解决现实生活中的一些实际问题 重难点、关键 1.重点:圆锥侧面积和全面积的计算公式 2.难点:探索两个公式的由来 3.关键:你通过剪母线变成面的过程. 教具、学具准备 直尺、圆规、量角器、小黑板 教学过程 复习引入 1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点 2.问题1:一种太空囊的示意图如图所示,太空囊的外表面须作特别处理,以承受 重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由 几部分组成的 解压密码联系qq11139686加微信公众号 Jlaoxuewuyou九折优 惠!淘宝网址; JIaoxue5 u. taobao con
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优 惠!淘宝网址:jiaoxue5u.taobao.com 广东省珠海十中九年级数学上册《24.4 弧长和扇形面积(2)》教 案 教学内容 1.圆锥母线的概念. 2.圆锥侧面积的计算方法. 3.计算圆锥全面积的计算方法. 4.应用它们解决实际问题. 教学目标 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会 应用公式解决问题. 通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及 应用它解决现实生活中的一些实际问题. 重难点、关键 1.重点:圆锥侧面积和全面积的计算公式. 2.难点:探索两个公式的由来. 3.关键:你通过剪母线变成面的过程. 教具、学具准备 直尺、圆规、量角器、小黑板. 教学过程 一、复习引入 1.什么是 n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点. 2.问题 1:一种太空囊的示意图如图所示, 太空囊的外表面须作特别处理,以承受 重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由 几部分组成的.
免费下载网址ht;/jiaoxue5uys168.com 老师点评:(1)n°圆心角所对弧长:L=mP 6 ,公式中没有n°,而 180 是n;弧长公式中是R,分母是180;而扇形面积公式中是R,分母是360,两者要记清, 不能混淆. (2)太空囊要接受热处理的面积应由三部分组成:圆锥上的侧面积,圆柱的侧面积 和底圆的面积 这三部分中,第二部分和第三部分我们已经学过,会求出其面积,但圆锥的侧面积, 到目前为止,如何求,我们是无能为力,下面我们来探究它 二、探索新知 我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥 顶点和底面圆上任意一点的线段叫做圆锥的母线 (学生分组讨论,提问二三位同学) 问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得 到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,底面圆的半径为r,如图24-115 所示,那么这个扇形的半径为 扇形的弧长为 因此圆锥的侧面积为 ,圆锥的全面积为 老师点评:很显然,扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周 长.因此,要求圆锥的侧面积就是求展开图扇形面积S 其中n可由2丌r 求 180 360 360r ∴扇形面积 360=xr1L:全面积是由侧面积和底面圆的面积组成 的,所以全面积=rL+r2 例1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为 58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到 0.1cm2) 分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧 面积 解压密码联系qq11139686加微信公众号 Jlaoxuewuyou九折优 惠!淘宝网址; JIaoxue5 u. taobao
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优 惠!淘宝网址:jiaoxue5u.taobao.com 老师点评:(1)n°圆心角所对弧长:L= 180 n R ,S 扇形= 2 360 n R ,公式中没有 n°,而 是 n;弧长公式中是 R,分母是 180;而扇形面积公式中是 R,分母是 360,两者要记清, 不能混淆. (2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积, 圆柱的侧面积 和底圆的面积. 这三部分中,第二部分和第三部分我们已经学过,会求出其面积, 但圆锥的侧面积, 到目前为止,如何求,我们是无能为力,下面我们来探究它. 二、探索新知 我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥 顶点和底面圆上任意一点的线段叫做圆锥的母线. (学生分组讨论,提问二三位同学) 问题 2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得 到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为 L,底面圆的半径为 r,如图 24-115 所示,那么这个扇形的半径为________,扇形的弧长为______ __, 因此圆锥的侧面积为 ________,圆锥的全面积为________. 老师点评:很显然,扇形的半径就是圆锥的母线, 扇形的弧长就是圆锥底面圆的周 长.因此,要求圆锥的侧面积就是求展开图扇形面积 S= 2 360 n l ,其中 n 可由 2 r= 2 180 n l 求 得:n= 360r l , ∴扇形面积 S= 360 2 360 r l l = rL;全面积是由侧面积和底面圆的面积组成 的,所以全面积= rL+r2. 例 1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为 58cm,高为 20cm,要制作 20 顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到 0.1cm2) 分析:要计算制作 20 顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧 面积.
免费下载网址ht;/jiaoxue5uys168.com 解:设纸帽的底面半径为rcm,母线长为Lcm,则 58 )2+202≈2.03 S侧=丌L≈-×58×22.03=638.87(cm) 638.87×20=12777.4(cm2) 所以,至少需要127774cm2的纸 例2.己知扇形的圆心角为120°,面积为300xcm (1)求扇形的弧长 (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少? 分析:(1)由Sn=mR求出R,再代入L=mR求得.(2)若将此扇形卷成 360 180 圆锥,扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径 圆锥母线为腰的等腰三角形 解:(1)如图所示: R 120rR2 S=300π 300 120×丌×30 弧长L =20丌(cm) 180 (2)如图所示: 20丌=20丌r r=10,R=30 AD=√900-100 S轴截面=× BCXAD =-×2×10×20 解压密码联系qq11139686加微信公众号 Jlaoxuewuyou九折优 惠!淘宝网址; JIaoxue5 u. taobao con
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优 惠!淘宝网址:jiaoxue5u.taobao.com 解:设纸帽的底面半径为 rcm,母线长为 Lcm,则 r= 58 2 L= 58 2 2 ( ) 20 2 + ≈22.03 S 纸帽侧= rL≈ 1 2 ×58×22.03=638.87(cm) 638.87×20=12777.4(cm 2) 所以,至少需要12777.4cm2 的纸. 例 2.已知扇形的圆心角为 120°,面积为 300 cm 2. (1)求扇形的弧长; (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少? 分析:(1)由 S 扇形= 2 360 n R 求出 R,再代入 L= 180 n R 求得.(2)若将此扇形卷成一个 圆锥, 扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径, 圆锥母线为腰的等腰三角形. 解:(1)如图所示: ∵300 = 2 120 360 R ∴R=30 ∴弧长 L= 120 30 180 =20 (cm) (2)如图所示: ∵20 =20 r ∴r=10,R=30 AD= 900 100 − =20 2 ∴S 轴截面= 1 2 ×BC×AD = 1 2 ×2×10×20 2 =200 2 (cm 2)
免费下载网址ht;/jiaoxue5uys168.com 因此,扇形的弧长是20xcm卷成圆锥的轴截面是200√2cm2 三、巩固练习 教材P124练习1、2. 四、应用拓展 例3.如图所示,经过原点0(0,0)和A(1,-3),B(-1,5)两点的曲线是抛物 线y=ax2+bx+c(a≠0) (1)求出图中曲线的解析式 (2)设抛物线与x轴的另外一个交点为C,以0C为直径作⊙M,如果抛物线上一点 P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连结MD,已知点E的坐标为(0, m),求四边形EOMD的面积(用含m的代数式表示) (3)延长DM交⊙M于点N,连结ON、OD,当点P在(2)的条件下运动到什么位置时 能使得S四边形Eom=S△Do请求出此时点P的坐标 解:(1)∵0(0,0),A(1,-3),B(-1,5)在曲线y=ax2+bx+c(a≠0)上 0=c ∴-3=a+b+c 解得a=1,b=-4,c=0 ∴图中曲线的解析式是y=x2-4x (2)抛物线y=x2-4x与x轴的另一个交点坐标为c(4,0), 连结EM, ⊙M的半径为2,即OM=DM=2 ED、EO都是⊙M的切线 ∴EO=ED∴△EOM≌△EDM ∴S四边形 OE=2m (3)设点D的坐标为(x0,yo) S△ox=2S△=2X-OMyo=2yo 时即2m=2y ∴ED∥x轴 解压密码联系qq11139686加微信公众号 Jlaoxuewuyou九折优 惠!淘宝网址; JIaoxue5 u. taobao
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优 惠!淘宝网址:jiaoxue5u.taobao.com 因此,扇形的弧长是 20 cm 卷成圆锥的轴截面是 200 2 cm 2. 三、巩固练习 教材 P124 练习 1、2. 四、应用拓展 例 3.如图所示,经过原点 O(0,0)和 A(1,-3),B(-1,5) 两点的曲线是抛物 线 y=ax 2 +bx+c(a≠0). (1)求出图中曲线的解析式; (2)设抛物线与 x 轴的另外一个交点为 C,以 OC 为直径作⊙M, 如果抛物线上一点 P 作⊙M 的切线 PD,切点为 D,且与y 轴的正半轴交点为 E,连结 MD,已知点 E 的坐标为(0, m),求四边形 EOMD 的面积(用含 m 的代数式表示). (3)延长 DM 交⊙M 于点 N,连结 ON、OD,当点 P 在(2)的条件下运动到什么位置时, 能使得 S 四边形 EOMD=S△DON 请求出此时点 P 的坐标. 解:(1)∵O(0,0),A(1,-3),B(-1,5)在曲线 y=ax 2 +bx+c(a≠0)上 ∴ 0 3 5 c abc a b c = − = + + = − + 解得 a=1,b=-4,c=0 ∴图中曲线的解析式是 y=x 2 -4x (2)抛物线 y=x 2 -4x 与 x 轴的另一个交点坐标为 c(4,0), 连结 EM, ∴⊙M 的半径为 2,即 OM=DM=2 ∵ED、EO 都是⊙M 的切线 ∴EO=ED ∴△EOM≌△EDM ∴S 四边形 EOMD=2S△OME=2× 1 2 OM·OE=2m (3)设点 D 的坐标为(x0,y0) ∵S△DON=2S△DOM=2× 1 2 OM×y0=2y0 ∴S 四边形 ECMD=S△DON 时即 2m=2y0,m=y0 ∵m=y0 ∴ED∥x 轴
免费下载网址ht;/jiaoxue5uys168.com 又∵ED为切线 D(2,2) 点P在直线ED上,故设P(x,2) ∴P在圆中曲线y=x2-4x上 4±√16 ∴2=x2-4x解得 +8 √6 ∴P1(2+√6,0),P2(2-√6,2)为所求 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.什么叫圆锥的母线 2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题 六、布置作业 1.教材P124复习巩固4P125综合运用8拓广探索9、10. 2.选用课时作业设计 第二课时作业设计 、选择题 1.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线为() A 6cm B. 8cm C. 10cm D. 12cm 2.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直 径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为() A.228 B.14 D. 3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发 绕侧面一周,再回到点A的最短的路线长是() √3 33 √3 二、填空题 1.母线长为L,底面半径为r的圆锥的表面积 2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积 是(用含丌的代数式表示) 解压密码联系qq11139686加微信公众号 Jlaoxuewuyou九折优 惠!淘宝网址; JIaoxue5 u. taobao
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优 惠!淘宝网址:jiaoxue5u.taobao.com 又∵ED 为切线 ∴D(2,2) ∵点 P 在直线 ED 上,故设 P(x,2) ∵P 在圆中曲线 y=x 2 -4x 上 ∴2=x2 -4x 解得:x= 4 16 8 2 + =2± 6 ∴P1(2+ 6 ,0),P2(2- 6 ,2)为所求. 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.什么叫圆锥的母线. 2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题. 六、布置作业 1.教材 P124 复习巩固 4 P125 综合运用 8 拓广探索 9、10. 2.选用课时作业设计. 第二课时作业设计 一、选择题 1.圆锥的母线长为 13cm,底面半径为 5cm,则此圆锥的高线为( ) A.6cm B.8cm C.10cm D.12cm 2.在半径为 50cm 的圆形铁皮上剪去一块扇形铁皮, 用剩余部分制作成一个底面直 径为 80cm,母线长为 50cm 的圆锥形烟囱帽,则剪去的扇形的圆心角度数为( ) A.228° B.144° C.72° D.36° 3.如图所示,圆锥的母线长是 3,底面半径是 1,A 是底面圆周上一点, 从点 A 出发 绕侧面一周,再回到点 A 的最短的路线长是( ) A.6 3 B. 3 3 2 C.3 3 D.3 二、填空题 1.母线长为 L,底面半径为 r 的圆锥的表面积=_______. 2.矩形 ABCD 的边 AB=5cm,AD=8cm,以直线 AD 为轴旋转一周, 所得圆柱体的表面积 是__________(用含 的代数式表示)
免费下载网址ht;/jiaoxue5uys168.com 3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部 铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用m2 的油毡 三、综合提高题 1.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,需要加工这样的一个 烟囱帽,请你画一画: (1)至少需要多少厘米铁皮(不计接头) (2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至 少应是多少? 2.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求圆锥全面积 Bb→>c 3.如图所示,一个几何体是从高为4m,底面半径为3cm的圆柱中挖掉一个圆锥后得 到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,求这 个几何体的表面积 谷案 1.D2.C 二、1.丌r2+丌rL2.130xcm23.158.4 、1.(1)2400cm2(2)40√3cm 48 T cm 3.S表=S柱侧+S柱底+S=2丌×3×4+x×32+x×3×5=24丌+9丌+15丌=48xcm2 解压密码联系qq11139686加微信公众号 Jlaoxuewuyou九折优 惠!淘宝网址; JIaoxue5 u. taobao con
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优 惠!淘宝网址:jiaoxue5u.taobao.com 3.粮仓顶部是一个圆锥形,其底面周长为 36m,母线长为 8m,为防雨需在粮仓顶部 铺上油毡,如果按用料的 10%计接头的重合部分,那么这座粮仓实际需用________m 2 的油毡. 三、综合提高题 1.一个圆锥形和烟囱帽的底面直径是 40cm,母线长是 120cm, 需要加工这样的一个 烟囱帽,请你画一画: (1)至少需要多少厘米铁皮(不计接头) (2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至 少应是多少? 2.如图所示,已知圆锥的母线长 AB=8cm,轴截面的顶角为 60°, 求圆锥全面积. 3.如图所示,一个几何体是从高为 4m,底面半径为 3cm•的圆柱中挖掉一个圆锥后得 到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上, 求这 个几何体的表面积. 答案: 一、1.D 2.C 3.C 二、1. r 2 + rL 2.1 30 cm 2 3.158.4 三、1.(1)2400 cm 2 (2)40 3 cm 2.48 cm 2 3.S 表=S 柱侧+S 柱底+S 锥侧=2 ×3×4+ ×3 2 + ×3×5=24 +9 +15 =48 cm 2.