第三章习题 一.冲章要点 1.利用傅立叶缎数的定义式分析周期信号的高 散谱 2用傅立叶积分分析蒎周期信号的连续谱. 3理解信号的时城频城间的关系 4.用傅立叶变换的性质缝行正递变换 5.握抽样信号频谱的计算及抽样定貍
第三章 习题课 一 .本章要点 1.利用傅立叶级数的定义式分析周期信号的离 散谱. 2.利用傅立叶积分分析非周期信号的连续谱. 3.理解信号的时域与频域间的关系. 4.用傅立叶变换的性质进行正逆变换. 5.掌握抽样信号频谱的计算及抽样定理
二.付立叶級飘(三角形式) f(t)=ao+>(an cos no,t+bn, sin no,t) O f(tat T 2 f(t)cos na,tdt TJT 2 「,f(O) sinno,tdt T
二.付立叶级数(三角形式) ( ) ( cos sin ) 1 1 1 0 f t a a n t b n t n n = + n + = = T f t dt T a ( ) 1 0 f t n tdt T a T n 1 ( ) cos 2 = = T n f t n tdt T b 1 ( )sin 2
f(t)=co +>cn cos(no,t+pn) 1 0 0 b tb n n arts 指形式 f()=∑Fne" F=lf(e no, 有限项傳立叶級飘的方帕俣差 62=f()[ao2+∑(an2+bn2)
( ) cos( ) 1 0 1 n n n f t = c + c n t + = 0 a0 c = ( ) 2 2 n an bn c = + n n n a b = −arctg 指数形式 1 ( ) j n t n f t Fn e =− = f t e dt T F T j n t n − = 1 ( ) 1 有限项傅立叶级数的方均误差 ( )] 2 1 ( ) [ 2 1 2 2 0 2 2 n N n n = f t − a + an + b = −
若似周期信号的三角傳立叶級數中选取 2N+1项构成一个有限缎數 Sx(t)=a0+2(an cosn@, t+bn sin nO, ,) n=1 当用S(1)代替∫(1)时,引起的俣差画数苟 5n(t)=f()-S()方均误差 F 2 NSN T ISN (tdt 证明lp893-3)(3-4)所给出的anbn值满是 最小误差条2最小的方俣差等于 f(t)-lao (
最小误差条件 最小均方误差等于 证 明 所给出的 値满 足 方均误差 当 用 代 替 时,引起的误差函数为 项构成一个有限级数 若从周期信号的三角形式傅立叶级数中选取 ;2. 1. 89(3 3),(3 4) , ( ) 1 ( ) ( ) ( ) ( ); ( ) ( ) ( ) ( cos sin ) 2 1 . 2 2 2 1 2 1 1 1 0 n n T N N T N n N N n N n N n p a b t dt T E t t f t S t S t f t S t a a n t b n t N − − = = = − = + + + − = ( )] 2 1 ( ) [ 2 1 2 2 0 2 2 n N n n = f t − a + an + b = −
f(t)=lf(t)dt T 证明:設 SN(t)=ao+>(ain cosn@,t+bin sin no,t) EN(t)=f(t-s(t) N=5n(t)1 SN(tdt T CE N CEN_O da ab
f t dt T f t T = ( ) 1 ( ) 2 2 证明:设 ( ) ( cos sin ) 1 1 1 1 0 1 s t a a n t b n t n N n N = + n + = (t) f (t) s (t) N = − N 0 b E 0 a E n N n N = = t dt T E t T T N n N ( ) 1 ( ) 2 2 2 2 − = =
CE OE N OEN =0 da daI oa OEN OEN OE 0设 ab, ab2 ob S(t)=ao+>(a,n cosn@ot+bin sin noot N(t)=f(t)-s() EN(t)=[f()-ao-oain cos n@ot+bin sin noo )
0 a E .... a E a E n N 1 N N 0 = = = = .... 0 1 2 = = = = n N N N b E b E b E 设 ( ) ( cos sin ) 0 1 0 1 0 1 S t a a n t b n t n N n N = + n + = (t) f (t) s (t) N = − N 2 0 1 0 1 0 1 2 (t) [ f (t) a ( a cos n t b sin n t)] n N n N = − − n + =
灌意在要求帕方误差En的过程中 f(t)=ao+>(an cos nwot+ b sin nwot) 其中乱n,bn分用p89(3-3),(3-4)表达 的方误差E∏为 En=T EN(o)dt f2()-a2+∑(an2+bn)-∑(anan+bnb =f2()-a+∑(an-an)2+∑( ∑(an2+bn
注意在要求均方误差En的过程中 = = + + 1 0 0 0 ( ) ( cos sin ) n n n f t a a nw t b nw t 其中an,bn分别用p89(3-3),(3-4)表达 均方误差En为 t dt T E N T n T ( ) 1 2 2 2 − = = = = − + + − + N n N n n n n n n n f t a a b a a b b 1 1 1 1 2 1 2 1 2 0 2 ( ) ( ) 2 1 ( ) = = = = − + − + − − + N n N n N n n n n n n n f t a a a b b a b 1 1 1 2 2 2 1 2 1 2 0 2 ( ) 2 1 ( ) 2 1 ( ) 2 1 ( )
E: EN>OThen ain=a,bn=b 2 E=f(t)-[ 2 2 (an +bn) 2 1若要均方误差最小,则傅立叶系数是唯一的 2项数选得越多,均方误差越小。 例一:P1633-11提示 sin at 0<t<2 f(t)= 0 2<t<4 f2(t)=f1(t+)-f1(t
若: EN Then a1n = an b1n = bn 0. . . ( ) 2 1 ( ) [ 1 2 2 2 0 2 = = − + + N n n EN f t a an b 例一:P163.3-11提示 f 1 (t) = sin t 0 t 2 0 2 t 4 ) 2 3 ) ( 2 1 ( ) ( f 2 t = f 1 t + − f 1 t − 项数选得越多,均方误差越小。 若要均方误差最小,则傅立叶系数是唯一的 2. 1
例二:p170.3-46 ■■■■ 解:单个梯形脲冲的傅立叶变换为(380附录3) 8E F()=-2 T+to.T-T SIn sIn Q2(T-) 4 (T+TE Sarl+l)o sa (T
例二:p170.3 − 46 2 T 2 T − 2 2 − E f (t) −T T t 解:单个梯形脉冲的傅立叶变换为(380.附录3) ] 4 ( ) 4 ( ) [ 2 ( ) 4 ( ) sin 4 ( ) sin ( ) 8 ( ) 1 2 + + − = + − − = T Sa T Sa T E T T T E F
f(t E (T+t F(0) 4丌 22 T+T T T f(1)*f( E F()() TTT I TT t 2
2 T 2 T − 2 2 − E f (t) F( j) t ( ) 2 T + E T + 4 −T T ( ) 1 f t 2 T 2 T − 2 2 − E ( ) ( ) 1 f t f t −T T t 0 − ( ) ( ) F F1 −