131有理数的加法 回到首页
1.3.1 有理数的加法
教学目标 知识与技能 1通过实例了解有理数加法的意义会根据有理数的加法法则进 行有理数的加法运算 2能运用有理数的加法解决实际问题 过程与方法 1正确地进行有理数的加法运算 2用数形结合的思想方法得出有理数的加法法则 情感态度与价值观 通过师生互动学生自我探究让学生充分参与到学习过程中来 体验数学学习过程的乐趣
知识与技能 1.通过实例,了解有理数加法的意义,会根据有理数的加法法则进 行有理数的加法运算. 2.能运用有理数的加法解决实际问题. 过程与方法 1.正确地进行有理数的加法运算. 2.用数形结合的思想方法得出有理数的加法法则. 情感态度与价值观 --通过师生互动,学生自我探究,让学生充分参与到学习过程中来 ,体验数学学习过程的乐趣
教学重点 了解有理数加法舶意义会据理数加 法法则进行有数的加法算 教学难点 有理数加法中的号两豢何进行机法运算
了解有理数加法的意义,会根据有理数加 法法则进行有理数的加法运算. 有理数加法中的异号两数如何进行加法运算
V创设情景、导人新课 足球循环赛中通常把进球数 记为正数失球数记为负数,它们的 和叫作净胜球数有三个队参加的 足球比赛中红队胜黄队(4:1),黄队 胜蓝队(1:0),蓝队胜红队(1:0如何 确定三个队的净胜球数与排名顺 序? F 请同学们自学教材P1719,并完成自学导练, 相信大家感悟快!
足球循环赛中,通常把进球数 记为正数,失球数记为负数,它们的 和叫作净胜球数.有三个队参加的 足球比赛中,红队胜黄队(4:1),黄队 胜蓝队(1:0),蓝队胜红队(1:0),如何 确定三个队的净胜球数与排名顺 序? 请同学们自学教材P17-19,并完成自学导练, 相信大家感悟快!
要点底知一 同号两加数相加,取相同的答号,并把绝对值相加;绝对 值不相等的异号两数相加,取绝对值较大的加数的号,并 用较大的绝对值减去较小的绝对值 要点感知二 互为相反数的兩数相加,和为0;一个数与0相加,仍得 这个数 才练习: 1在1、-1、2这三个数中,任意两数之和的最大值是(B) A.1 B.0 C.-1 D.-3 2在方框内填入适当的符号使下列等式成立: (1)2+(-11)=-13 (2)口7(-7)=0 (3)(-10)+(015)=-25;(4)口计
互为相反数的两数相加,和为0 ;一个数与0相加,仍得 这个数. 同号两加数相加,取相同的符号,并把绝对值相加;绝对 值不相等的异号两数相加,取绝对值较大的加数的符号,并 用较大的绝对值减去较小的绝对值. 1.在1、-1、-2这三个数中,任意两数之和的最大值是(B) A.1 B.0 C.-1 D.-3 - + - + 4 7 2.在方框内填入适当的符号使下列等式成立: (1)□2+(-11)=-13; (2)□7+(-7)=0; (3)(-10)+(□15)=-25;(4)□ +(□ )=-1. 4 11 -
少典例剖析 包③●有理激加法法则及运算 例题1计算:()+1.13+(13)(2X-3)+(3)6)+12)+3 (4)(-22)+(+2)(5)(-8)+(+3 解析:(1)(+1.15)+(-1.13)=+(1.15-1.13)=0.02 (2)(--)+(-)=-( 1(3)( (1 2 (4)(-2-)+(+2=)=0 (5)(-8-)+(+3-)=-(8--3=) 36 2 点评进行有理数的加法运算要遵循“一定二求三和差”的步 骤,即第一步先确定和的符号,第〓步再求加数的绝对值,第 三步要分析确定是绝对值相加还是相减
有理数加法法则及运算 例题1 计算: 解析: 进行有理数的加法运算要遵循“一定二求三和差”的步 骤,即第一步先确定和的符号,第二步再求加数的绝对值,第 三步要分析确定是绝对值相加还是相减. 点评: (1)(+1.15) + (−1.13) ) 3 1 ) ( 3 2 (2)(− + − 3 2 ) 2 1 (3)(+1 + ) 7 3 ) ( 2 7 3 (4)(−2 + + (1)(+1.15)+(-1.13)=+(1.15-1.13)=0.02 2 9 ) 6 5 3 3 1 ) (8 6 5 ) ( 3 3 1 (5)(−8 + + = − − = − ) 1 3 1 3 2 ) ( 3 1 ) ( 3 2 (2)(− + − = − + = − 6 1 ) 2 3 2 2 1 (1 3 2 ) 2 1 (3)(+1 + = + + = ) 0 7 3 ) ( 2 7 3 (4)(−2 + + = ) 6 5 ) ( 3 3 1 (5)(−8 + +
对应练习 1对于计算(-45+0.5的结果,叙述正确的是(D A其结果应与45+05的结果相同,即为5 B其结果应与45-05的结果相同,即为4 c所求和一定大于-45且大于05 D取-45的负号,并用-45的绝对值减去05的绝对值减去 05的绝对值,即为-4 2有理数a、b在数轴上的位置如图所示,则a+b-定是(B) A正数 B负数 c.0 D不能正确 3比-5大3的数是2,比大-3的数是
2.有理数a、b在数轴上的位置如图所示,则a+b一定是( ) A.正数 B.负数 C.0 D.不能正确 1.对于计算(-4.5)+0.5的结果,叙述正确的是( D) A.其结果应与4.5+0.5的结果相同,即为5 B.其结果应与4.5-0.5的结果相同,即为4 C.所求和一定大于-4.5且大于0.5 D.取-4.5的负号,并用-4.5的绝对值减去0.5的绝对值减去 0.5的绝对值,即为-4 B 3.比-5大3的数是 -2 ,比2大-3的数是 -1
对应练习 4.计算:(1)(-3)+(-12); (2)+(-) 解:原式= 解:原式 15 15 (3)(-)+0; (4)(-)+0.75 解:原式≡ 解:原式=0 3 (5)(-2-)+(-1.3) (6)(+19)+(-6 解:原式=-3.9 解:原式≡13
5 3 4. 计算:(1)(-3)+(-12); (2) +(- ); (3)(- )+0; (4)(- )+0.75; 4 3 3 2 3 1 ) ( 1.3) 5 3 (5)(−2 + − ) 4 1 ) ( 6 2 1 (6)(+19 + − 解:原式=- 15 解:原式=-3.9 3 1 解: 原式 = − 解:原式=0 解: 15 1 原式 = − 解: 4 1 原式 =13
小典例剖析 包③有理加法纳筒单应用 例题2一病人每天下午都需要测量血压,该病人上个星期日的 收缩压为160单位下表是该病人星期一至星期五收缩压的变化情况: 星期 四 五 收缩压的变化 +30 20 +17 +18 20 (与前一天的比较)单位 单位 单位 单位 单位 (注:正号表示血压比前一天升,负号表示比前一天降) (1)本周哪一天血压最高,哪一天血压最低? 解析:与上周日比较:星期一:+30单位星期二:+30+(-20)=+10单 位 星期三:+10+(+17)=+27单位;星期四:+27+(+18)=+45 国健可得:星期四血压最高,星期二血压最低 星期五:+45+(-20)=+25单位
有理数加法的简单应用 例题2 解析: 一病人每天下午都需要测量血压,该病人上个星期日的 收缩压为160单位.下表是该病人星期一至星期五收缩压的变化情况: 与上周日比较:星期一:+30单位;星期二:+30+(-20)=+10单 位: 星期三:+10+(+17)=+27单位;星期四:+27+(+18)=+45 单位; 星期五:+45+(-20)=+25单位. 因此可得:星期四血压最高,星期二血压最低. 星期 一 二 三 四 五 收缩压的变化 (与前一天的比较) +30 单位 -20 单位 +17 单位 +18 单位 -20 单位 (1)本周哪一天血压最高,哪一天血压最低? (注:正号表示血压比前一天升,负号表示比前一天降.)
小典例剖析 包③有理加法纳筒单应用 例题2一病人每天下午都需要测量血压,该病人上个星期日的 收缩压为160单位下表是该病人星期一至星期五收缩压的变化情况: 星期 四 五 收缩压的变化 +30 20 +17 +18 20 (与前一天的比较)单位 单位 单位 单位 单位 注:正号表示血压比前一天升,负号表示比前一天降) (2)与上周日相比,该病人星期五的血压是升了还是降了?该病 人的收缩压是多少? 解上周日相比,该病人的血压升了25单位,星期五的收缩压为: 160+25=185单位 点评有水平的运动,同样也有上、下升、降运动,如电梯的升 降、汽车的运动、水位的变化,以及与它们相类似的股票间题,都 属于要用有理数加法解决的间题
有水平的运动,同样也有上、下、升、降运动,如电梯的升 降、汽车的运动、水位的变化,以及与它们相类似的股票问题,都 属于要用有理数加法解决的问题. 点评: 有理数加法的简单应用 例题2 一病人每天下午都需要测量血压,该病人上个星期日的 收缩压为160单位.下表是该病人星期一至星期五收缩压的变化情况: 星期 一 二 三 四 五 收缩压的变化 (与前一天的比较) +30 单位 -20 单位 +17 单位 +18 单位 -20 单位 (注:正号表示血压比前一天升,负号表示比前一天降.) (2)与上周日相比,该病人星期五的血压是升了还是降了?该病 人的收缩压是多少? 与上周日相比,该病人的血压升了25单位,星期五的收缩压为: 160+25=185单位. 解析: