
第十章Fourier分析在前一章,我们讨论了函数项级数,并把幂级数作为重要的特殊函数项级数加以讨论.为了研究周期现象,下面我们研究另一类特殊的函数项级数81Fourier级数函数列1,cos,sinr,cos2r,sin2r,...,cosnr,sinna,..称为三角函数系,有限和n(ak cos kr+ be sin ka)ao+k=1称为三角多项式,而形式和(akcoskr+bisinka)ao +k=1称为三角级数,其中ao,ak,bk等称为该三角级数的系数三角函数都是周期为2元的函数。一个自然的问题是,如果f是一个周期为2元的函数,能否用三角多项式去逼近它?为了讨论这一问题,以下我们假定f总是Riemann可积或反常绝对可积的函数定义(Fourier系数)设f为[一元,]上的Riemann可积函数,周期为2元令f(r)dr,ao:nf(α)sinkrdr, k =1,2,...f(a)coskrdr,b=ak =T7Tao,ak,bk称为f的Fourier系数,形式和ao+(ak cos ka + bk sin ka)2k=11
6HW Fourier :O Æ({, ^PPIicI, cI/\ y$QGPIic If}P. \vz!$ek, a^vz{QG$PIicI. §1 Fourier @K PI 1, cos x,sin x, cos 2x,sin 2x, · · · , cos nx,sin nx, · · · \8pPI_, fR a0 + Xn k=1 (ak cos kx + bk sin kx) \8p0iA, 1oAR a0 + X∞ k=1 (ak cos kx + bk sin kx) \8pcI, % a0, ak, bk %\=8pcI$_I. 8pPI+C!$\ 2π $PI. {@)1$]SC, 5M f C{@!$ \ 2π $PI, 98p0iA.yN? \P{]S, }a^g) f *C Riemann ^\5/^$PI. 7S (Fourier PK) ; f \ [−π, π] 9$ Riemann ^PI, !$\ 2π. a0 = 1 n Z π −π f(x)dx, ak = 1 π Z π −π f(x)cos kxdx, bk = 1 π Z π −π f(x)sin kxdx, k = 1, 2, · · · a0, ak, bk \ f $ Fourier _I, oAR a0 2 + X∞ k=1 (ak cos kx + bk sin kx) 1

称为f的Fourier级数或Fourier展开,记为80+Z(ax cos ka + bk sin ka)f(r)~2k=18000注(1)如果f()=+(akcoskar+bksinka)一致收敛,则由逐项积分-2k=1可得f()d=a元+cos krdr + bksinb.daa0元k=1同理,af(r)coskrd =coskrd+cos kr cosmrdr + bncoskrsinmrdm=1cos? krdr + 0 = akT= 0+a'对于bk有类似结果,这就是为什么我们要象前面那样定义Fourier系数(2)简单的观察表明,如果f为奇函数,则ak=0(k≥O),此时的Fourier展开称为正弦级数;如果f为偶函数,则bk=0(k≥1),此时的Fourier展开称为余弦级数的例1设为2元周期函数,且10<T<T,2'f(r) =0,=0,±元,102求f的Fourier展开解f为奇函数,因此ak=0.而bk=f(r) sin ka =sin krdsinkadr[1 - (-1)]2
\ f $ Fourier cI\ Fourier , e\ f(x) ∼ a0 2 + X∞ k=1 (ak cos kx + bk sin kx). Y (1) 5M f(x) = a0 2 + X∞ k=1 (ak cos kx + bk sin kx) {E, "i^8 # Z π −π f(x)dx = a0π + X∞ k=1 ak Z π −π cos kxdx + bk Z π −π sin bxdx = a0π W , Z π −π f(x)cos kxdx = Z π −π a0 2 cos kxdx + X∞ m=1 am Z π −π cos kx cos mxdx + bm Z π −π cos kx sin mxdx = 0 + ak · Z π −π cos2 kxdx + 0 = akπ / bk LuM, {C\>^yk(x) Fourier _I. (2) i$I , 5M f \&PI, ak = 0 (k ≥ 0), =$ Fourier \ccI; 5M f \!PI, bk = 0 (k ≥ 1), =$ Fourier \ ccI$. C 1 ; f \ 2π !$PI, ) f(x) = 1 2 , 0 < x < π, 0, x = 0, ±π, − 1 2 , −π < x < 0 + f $ Fourier . A f \&PI, ak = 0. 1 bk = 1 π Z π −π f(x)sin kx = 1 π · 1 2 Z π 0 sin kxdx − Z 0 −π sin kxdx = 1 kπ [1 − (−1)k ] 2

因此就得到了f的Fourier展开 sin(2k+1)r2f(r) ~2k+11-0例2设f为2元周期函数,且f()=r2,元≤≤元,求f的Fourier展开解f为偶函数,故bk=0,而rT222Tr? cos krdr:sinkrdr(分部积分)akkT= (-1)*4(k> 0)22元2-r?dr=ao3T这就得到了f的Fourier展开:元2coskarr2+4>-1)k1:23.k=1为了研究Fourier展开的收敛性,我们需要对系数ak,bk做一些估计定理1(Riemann-Lebesgue)设f在[a,b]上Riemann可积或反常绝对可积,则f(a) cos 入rda =, limlimf(r) sin Ardr = 0.证明Ve>o,Riemann可积或反常绝对可积的函数f可用阶梯函数逼近即存在阶梯函数9,使得 If(r) - g(r)]dr →+).入3
{#" f $ Fourier : f(x) ∼ 2 π X∞ k=0 sin(2k + 1)x 2k + 1 . C 2 ; f \ 2π !$PI, ) f(x) = x 2 , −π ≤ x ≤ π, + f $ Fourier . A f \!PI, G bk = 0, 1 ak = 2 π Z T1 0 x 2 cos kxdx = 2 π Z π 0 2 k x sin kxdx (8Æ^8) = (−1)k 4 k 2 (k > 0) a0 = 1 π Z π −π x 2dx = 2 3 π 2 {#" f $ Fourier : x 2 ∼ π 2 3 + 4X∞ k=1 cos kx k 2 (−1)k . \vz Fourier $Ep, ^qy/_I ak, bk .{mFd. 7B 1 (Riemann-Lebesgue) ; f Æ [a, b] 9 Riemann ^\5/ ^, lim λ→∞ Z b a f(x)cos λxdx = lim λ→+∞ Z b a f(x)sin λxdx = 0. XF ∀ ε > 0, Riemann ^\5/^$PI f sRPIy, bÆsRPI g, @# Z b a |f(x) − g(x)|dx < ε, =, Z b a f(x)cos λxdx − Z b a g(x)cos λxdx ≤ Z b a |f(x) − g(x)|dx < ε. , y/sRPIub, x1y/ [c, d] ⊂ [a, b] 9$PI b: 5M f = µ, Z d c µ cos λxdx = µ · Z d c cos λddx = µ · 1 λ (sin λd − sin λc) ≤ 2|µ| λ → 0, (λ → +∞). 3

对sin入r有完对类似的证明推论f的Fourier系数ak→0,b→0(k→+oo).这说明,周的函数作Fourier展开时,其高得分量的振幅是很小的反果f有更好的光滑性则其系数有更好的估计例反,设fEC1[一元,元]且 f(一元) = f(元), 则Lf(r) cos nrdran" f(a) sin nadaf(r).二sinnrf'(r) sin nrd = o(-), (Riemann - Lebesgue)n就般地,设fCk([,元),()(一)=(0)(),≤1,则同理,bn=o(an = o(-), bn = 0(92Fourier级数的收敛性在前就节积们已看到,反果C2[一,],f(-)=f(),f(一)=f+)则其Fourier系数满足估计an=o(元),bn=o(元),因而 Fourier展开就致收敛本节研究就般情形下Fourier级数的收敛性记1On() =++ cos a+cos 2a +.. cos na.利用1 - sin(k -sin(k +sin -rcoskr:23积们得到下面的等式On(2) = sin( + )rT≠2k元2 sina当=2k元时,规定an(r)=n+与,这进得到的。或部结函数,且" sin(n +)1+cosr+cos2+...+cosna)dr=222sina104
/ sin λx Z/L$. LE f $ Fourier _I ak → 0, bk → 0 (k → +∞). J, !$PI/ Fourier =, %?#8$:CUl$. 5M f CQ$JXp, %_ICQ$Fd. 5, ; f ∈ C 1 [−π, π], ) f(−π) = f(π), an = 1 π Z π −π f(x)cos nxdx = 1 π f(x) · 1 n sin nx π −π − 1 n Z π −π f 0 (x)sin nxdx = − 1 n · 1 π Z π −π f 0 (x)sin nxdx = o( 1 n ), (Riemann − Lebesgue) W , bn = o( 1 n ). {', ; f ∈ C k ([−π, π]), f (i) (−π) = f (i) (π), i ≤ k − 1, an = o( 1 nk ), bn = o( 1 nk ). §2 Fourier @K4JDQ Æ({t^|", 5M f ∈ C 2 [−π, π], f(−π) = f(π), f 0 (−π) = f 0 (+π), % Fourier _I+Fd an = o( 1 n2 ), bn = o( 1 n2 ), 1 Fourier {E. tvz{*oa Fourier cI$Ep. e σn(x) = 1 2 + cos x + cos 2x + · · · + cos nx. sin 1 2 x cos kx = 1 2 sin(k + 1 2 )x − sin(k − 1 2 )x ^#"a$%A σn(x) = sin(π + 1 2 )x 2sin 1 2 x , x 6= 2kπ. x = 2kπ =, L) σn(x) = n + 1 2 , x#"$ σ \ÆuPI, ) Z π 0 sin(n + 1 2 )x 2sin 1 2 x dx = Z π 0 ( 1 2 + cos x + cos 2x + · · · + cos nx)dx = π 2 . 4

sina7应用dr=2TJo首先,此积分是收敛的,我们可逼Cauchy其敛判断如下:设B>A,敛BsinrCOSTCOSB-dr-da+A22TJALArB dr11≤AB122+0,AI→ +8.AC+sindr敛记1=JAAsinEdrlimA-→+ar(n+)n sin alim-da2n-→+oJor" sin(n +)limdaT-rn-+J0CT11π-2Xlim) sin(n +Dada22sin2-T12(Riemann - Lebesgue)二其中,开为1lim(l2sin号-r=lim:0r-0a2sin号-02c·sin岁1做!ECo[0,元],从而可以应逼Riemann-Lebesgue看理2sinT设f的Fourier级数部分和为Sn(a),敛n号 +Z(ak cos ka + b sin kr)Sn(r)2K=1n1-1*72f(t)dt +f(t) coskt coskrdt +f(t) sin kt sin krdt2元Tmn广A1f(t)(cosktcoska+sinktsinka)dtL12元TK=11f(t)cos k(t - a)dt2+T元K-11f(r+u)on(u)du5
UV Z +∞ 0 sin x x dx = π 2 . Fb, ^8CE$, ^ Cauchy %".5a: ; B > A, Z B A sin x x dx = | − cos x x | B A + Z B A cos x x 2 dx| ≤ 1 A + 1 B + Z B A dx x 2 = 2 A → 0, A → +∞. e I = R +∞ 0 sin x x dx, I = lim A→+∞ Z A 0 sin x x dx = lim n→+∞ Z (n+ 1 2 )π 0 sin x x dx = lim n→+∞ Z π 0 sin(n + 1 2 )x x dx (x → (n + 1 2 )x) = π 2 + lim n→+∞ Z π 0 ( 1 x − 1 2sin x 2 ) · sin(n + 1 2 )xdx = π 2 . (Riemann − Lebesgue) %, \ lim x→0 ( 1 x − 1 2sin x 2 ) = lim x→0 2sin x 2 − x 2x · sin x 2 = 0, G 1 x − 1 2sin x 2 ∈ C 0 [0, π], 1} Riemann-Lebesgue . ; f $ Fourier cIÆ8R\ Sn(x), Sn(x) = a0 2 + Xn K=1 (ak cos kx + bk sin kx) = 1 2π Z π −π f(t)dt + 1 π Xn K=1 Z π −π f(t)cos kt cos kxdt + Z π −π f(t)sin ktsin kxdt = 1 π Z π −π f(t) " 1 2 + Xn K=1 (cos kt cos kx + sin ktsin kx) # dt = 1 π Z π −π f(t) " 1 2 + Xn K=1 cos k(t − x) # dt = 1 π Z π −π f(x + u)σn(u)du 5

等中最后一使其式逼判了变量明换u=t-,并定利逼了被我函数期周的性先部【一元-,元-]上期我分其类部【一元,元]上期我分,积从可以进一步改写为[" f(r + u) + f(e-u) sin(n + )uduSn(ar) =2sin 元0的意判,>0,由Riemann-Lebesgue看理1sin(n + )udrf(r+u)+f(a-u)lim1lim Sn(r)2sin "元n-→+0/o" f(r+u) +(f -u)+ lim2sin1r f(r +u)+ f(a-u).sin(n +)udlim2元n-→00Josin #开此,Sn(a)期收敛性们梯f部附要期性态有关,这更Riemann期发记,有时称为Riemann局部化例理定理1(Dini故而分)设f如前.如果日>0,使得(1)部r处期右系限f(r+)梯左系限f(r-)存部(2)我分r° f(r-u) -f(r-)duro f(a + u) - f(a+)du,u10绝对收敛,敛于期Fourier级数部点a处收敛类值(a+)+f(a-)2证明基本上更应逼 Riemann-Lebesgue 看理,以下的意判函数二-部2sin岁[0,]上期部续性下面积从以一使好故情形加以证明,这使情形对大多数应逼更足收期定义1设f更且义部[a,]上期函数,如果存部[a,b]期划分a=to<ti<...<tm=b,使得部每一使[ti-1,t](i=1,2,·**,m)上且义期函数f(ti-1+), a= ti-1fi(a)=f(a), ae(ti-1,t)(f(ti-),a=ti6
%,W{@%A"[ u = t − x, )^PI$!$p, bÆ [−π − x, π − x] 9$^8%Æ [−π, π] 9$^8. ^}x{ >n\ Sn(x) = 1 π Z π 0 f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du $", ∀ δ > 0, Riemann-Lebesgue , limn→∞ Sn(x) = 1 π limn→∞ Z δ 0 f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du + limn→∞ 1 π Z π δ f(x + u) + (f − u) 2sin u 2 = 1 π limn→∞ Z δ 0 f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du , Sn(x) $EpR f Æ x 0, @# (1) f Æ x $_f f(x+) R-_f f(x−) Æ; (2) ^8 Z δ 0 f(x + u) − f(x+) u du, Z δ 0 f(x − u) − f(x−) u du /E, f $ Fourier cIÆ( x E f(x+) + f(x−) 2 . ]9C Riemann-Lebesgue , }a$"PI 1 u − 1 2sin u 2 Æ [0, δ] 9$Æup. a^}{@QG*of}, @*o/0I C+E$. 7S 1 ; f C)Æ [a, b] 9$PI, 5MÆ [a, b] $Y8 a = t0 < t1 < · · · < tm = b, @#Æ{@ [ti−1, ti ] (i = 1, 2, · · · , m) 9)$PI fi(x) = f(ti−1+), x = ti−1 f(x), x ∈ (ti−1, ti) f(ti−), x = ti 6

都例[ti-1,ti]上的用微函数,则称f例分段用微函数定理2设f例周期为2元的一使分段用微函数,则VE[-元,元],f的Fourier级数在r处论则到(f(r+)+f(r-))1证明由前致的计算以下,在[0,]上的在续以下Riemann-Lebesgueu2sin"引理有" f(r+u)+ f(r -u) sin(n +)u1limlim Sn(r)=a2sin8元** f(a+u) + f(a-u) sin(n +limludu22u8T1f(α+u)-f(r_)(f(r+)+ f(r_) + limsin(n+uduu11f(-)-f(+)1).sin(n++ lim.udu2T(f(+) + f(r_),最后的等解例因为, 如果于 分段用微 则 (a+u)-(-) 和 (α-u)-(α-)关于u例分段在续(用积)的,从而用以应用Riemann-Lebesgue引理前节例1和例2都满足上述定理的条件,因此,在例1中取=1一得到 sin(2k +1)K42k + 1k-0在例2中取a=0一得到元2(-1)k1:212下致接着以一些例子例1足函数f()=cosμa,[,]的Fourier展因(μ不例整数)解绝f延拓为R上以2元为周期的周期函数,这例周函数,因此bk=07
+C [ti−1, ti ] 9$[PI, f C8-[PI. 7B 2 ; f C!$\ 2π ${@8-[PI, ∀ x ∈ [−π, π], f $ Fourier cIÆ x E" 1 2 (f(x+) + f(x−)). XF ($dM}a 1 u − 1 2sin u 2 Æ [0, δ] 9$Æu}a Riemann-Lebesgue limn→∞ Sn(x) = limn→∞ 1 π Z π π f(x + u) + f(x − u) 2 · sin(n + 1 2 )u sin u 2 du = limn→∞ 1 π Z π 0 f(x + u) + f(x − u) 2u · sin(n + 1 2 )udu = 1 2 (f(x+) + f(x−) + limn→∞ 1 π Z π 0 1 2 · f(x + u) − f(x−) u sin(n + 1 2 )udu + limn→∞ 1 π Z π 0 1 2 · f(x − u) − f(x+) u · sin(n + 1 2 )udu = 1 2 (f(x+) + f(x−)). ,W$%AC\, 5M f 8-[, f(x + u) − f(x−) u R f(x − u) − f(x−) u H u C8-Æu (^) $, 1} Riemann-Lebesgue . (t 1 R 2 ++9H) $Ul, , Æ 1 - x = 1 {#" π 4 = X∞ k=0 sin(2k + 1) 2k + 1 , Æ 2 - x = 0 {#" π 2 12 = X∞ k=1 (−1)k · 1 k 2 . ar&}{m(. C 1 +PI f(x) = cos µx, x ∈ [−π, π] $ Fourier (µ CI). A f wY\ R 9} 2π \!$$!$PI, C!PI, bk = 0. 7

而2Tcos μur·coskrdra元Jo1[cos(μ- k)r +cos(μ + k)a]dc元sin(μ-k)sin(μ+k)元2μ(-1)ksinμμ2 - k;2μ-kTμ+k元8012μsinμT171)"cosnacOSuT2μ2元-n2μ2n=1A2μsinμT11>→COSμT2μ2-n2元n=i1212μ1>cot-2/2Tn=iu-n2当0≤μ≤gsinpr:μ2-n2Tn=1如果一个函数仅部(0,元)上且绝,敛我只用以明先将它延拓为偶期为2元的函数,然同步对Fourier展因。常可的延拓有奇延拓和周延拓,即分别延拓为奇函数和周函数8
1 ak = 2 π Z π 0 cos µx · cos kxdx = 1 π Z π 0 [cos(µ − k)x + cos(µ + k)x]dx = 1 π sin(µ − k)π µ − k + sin(µ + k)π µ + k = 2µ(−1)k π sin µπ µ2 − k 2 ⇒ cos µx = 2µ sin µπ π 1 2µ2 + X∞ n=1 (−1)n · 1 µ2 − n2 cos nx! ⇒ cos µπ = 2µ sin µπ π 1 2µ2 + X∞ n=1 1 µ2 − n2 ! ⇒ cot πµ = 2µ π 1 2µ2 + X∞ n=1 1 µ2 − n2 ! . 0 ≤ µ ≤ q < 1 =, 9AH µ {E, 1"i^8 Z x 0 (cotπµ − 1 πµ )dµ = 1 π X∞ n=1 log(1 − x 2 n2 ) {#" sin πx $a$A, K$CNRA8v<8L: sin πx = πx(1 − x 2 1 2 )(1 − x 2 2 2 ) · (1 − x 2 n2 )· · · Æ9A x = 1 2 {#" Wallis DA: π 2 = Y∞ n=1 2n 2n − 1 · 2n 2n + 1 . C 2 L', sin µx = − 2sin µπ π X∞ n=1 (−1)n−1 · n sin nx µ2 − n2 . 5M{@PIwÆ (0, π) 9), ^}FbnNwY\!$\ 2π $ PI, 1W / Fourier . $wY&wYR!wY, b8 wY\& PIR!PI. 8

是3绝函数f(r)=a, rE (0,元)分别对奇延拓和偶延拓,然后分别求Fourier展开解奇延拓:令f(a) =a, E(-π,0),部0和土元处规定f为0.敛Fourier系数为元2bk=r-sinkrdrak=0,元J024.二2/*1coskr+sin kade=k元(-1)4-1. 2=k开此sinnt-1)n-10≤nn=1偶延拓:令f(r)=-r, rE (-π,0),部0处f(0)=0部±元处f为元,敛2CTbk= 0,rdr=aoπJoC元22[(-1)-1]rcoskrdr=ak二k2元TJo开此004cos(2k+1)r元O<<T.T:2(2k + 1)2Tk=0如果一使函数偶期为21,敛和偶期2元的情形类似,令 f(a) cos ede,n=0,1,2,...an =nTf(r) -sinbn=rdrn=1,2,...9
C 3 PI f(x) = x, x ∈ (0, π) 8 /&wYR!wY, 1W8 + Fourier . A &wY: f(x) = x, x ∈ (−π, 0), Æ 0 R ±π L) f \ 0. Fourier _I\ ak = 0, bk = 2 π Z π 0 x · sin kxdx = 2 π x · −1 k cos kx π 0 + 2 π π 0 1 k sin kxdx = (−1)k−1 · 2 k x = 2X∞ n=1 (−1)n−1 · sin nx n , 0 ≤ x < π. !wY: f(x) = −x, x ∈ (−π, 0), Æ 0 f(0) = 0, Æ ±π f \ π, bk = 0, a0 = 2 π Z π 0 xdx = π ak = 2 π Z π 0 x cos kxdx = 2 k 2π [(−1)k − 1] x = π 2 − 4 π X∞ k=0 cos(2k + 1)x (2k + 1)2 , 0 ≤ x ≤ π. 5M{@PI!$\ 2l, R!$ 2π $*oL, an = 1 l Z l −l f(x) · cos nπ l xdx, n = 0, 1, 2, · · · , bn = 1 l Z l −l f(x) · sin nπ l xdx, n = 1, 2, · · · . 9

敛f有Fourier量因ao+>na+bn sin(ancos21n=1通过变展替换t=用以绝周期21期函数变为周期2元函数开此的易看论且理2对类周期21期函数仍这立是4设f()例以2为周期期周期函数,且f(r) =r?, ae[-1, 1]足其Fourier量因式f为周函数开此bk=0.而2r?dr =ao:324?.cosnrd=an=2n2元2(-1)n,(分部我分)Jo这收明0+22=1+4cosnr,Vae[-1,1]n2ni如果对变展替明t=元,敛上解一例前节例2中期其解,如果绝此例梯本节例3结合起来,一得判如下其解2元2 cos n(★) ->0≤≤2元2元 = 3 n2Tn=1220<<2元对Fourier量因得判,下一节我它当然也用以通过对f(C)=2元只将要逼判这使其解g3Parseval时反数部前一节我只考虑了Fourier级数期到点论则性本节我只考虑我分意义下期论则性,这时对函数期要足需低10
f Fourier a0 2 + X∞ n=1 an cos nπ l x + bn sin nπ l x VNT[ t = πx l }!$ 2l $PI\!$ 2π PI, 4~, ) 2 /!$ 2l $PI3 . C 4 ; f(x) C} 2 \!$$!$PI, ) f(x) = x 2 , x ∈ [−1, 1] +% Fourier . A f \!PI, bk = 0. 1 a0 = Z 1 −1 x 2dx = 2 3 , an = 2 Z 1 0 x 2 · cos nπxdx = 4 n2π 2 (−1)n , (8Æ^8) J x 2 = 1 3 + 4 π 2 X∞ n=1 (−1)n n2 cos nπx, ∀x ∈ [−1, 1]. 5M/T t = πx, 9A{C(t 2 $%A. 5MRt 3 uT', {#"5a%A: (F) x − x 2 2π = π 3 − 2 π X∞ n=1 cos nx n2 , 0 ≤ x ≤ 2π N 1z}VN/ f(x) = x − x 2 2π , 0 ≤ x ≤ 2π / Fourier #", a{t^ ny"@%A. §3 Parseval =5I Æ({t^ Fourier cI$"(Ep. t^^8 a$Ep, =/PI$y+q&. 10