
第八章数项级数在研究Taylor展开时,我们遇到过级数的收敛问题。这一章和下一章我们就来处理这样的问题81级数收敛与发散的概念设a1,a2,*,an,为一列实数,形式和80Zan:=a1+a2+...+an+.n=1na=ai+…+an称为第n个部称为无究级数,a,称为通项或一般项,S。三k=1分和.8如果limSn=S存在且有限,则称级数an收敛,记为n=i2a-sn=1T否则就称级数an发散n=inan收敛→通项an→0(n→ 80).这是因为级数收敛的必要条件:n=1an=Sn-Sn-1-→S-S=0(n → 8).80an 收敛Ve>0, N=N(e),级数收敛的充要条件(Cauchy准则):n=i当n>N时[an+1 + an+2+...+ an+pl <e, Vp≥1.这时因为an+1 + an+2 +... + an+p = Sn+p - Sn,对数列[Sn]用Cauchy收敛准则即可.1
[R~ swes >*T Taylor BY, m;9EÆc. F.C;.Cm U\^F+. §1 drqk|]pZ`n a1, a2, · · · , an, · · · .f, & ; X∞ n=1 an = a1 + a2 + · · · + an + · · · xE, an #@.#, Sn = Xn k=1 ak = a1 + · · · + an n 2 .;. 8 limn→∞ Sn = S >v7!, ? E X∞ n=1 an Æc, I X∞ n=1 an = S. /?U E Xn n=1 an *. drqkZVxuf : Xn n=1 an Æc ⇒ # an → 0(n → ∞). F3 an = Sn − Sn−1 → S − S = 0 (n → ∞). drqkZYxuf (Cauchy }) : X∞ n=1 an Æc ⇔ ∀ ε > 0, ∃ N = N(), n > N |an+1 + an+2 + · · · + an+p| < ε, ∀ p ≥ 1. F3 an+1 + an+2 + · · · + an+p = Sn+p − Sn, &f {Sn} 5 Cauchy ÆcN?D[. 1

81判断级数例1的敛散性n=i n · (n + 1)解411112ZSn=1, (n-→8)F- k· (k + 1)k+1n+1k=1k=1故级数收敛8012例2判断级数的敛散性n=11111n>1时,与例1类似,有解<n2n-1n(n-1)n+p211111-120<7II→0, (n→8)2(k-1?nn+pk=n+1k=n+1元2由Cauchy准则,级数收敛(事实上其和为6判断级数广兴例3的敛散性(调和级数).n=in解Vn≥1,有艺11111Y1-.S2n+in+22n2n2n2nk=n+1由Cauchy准则,级数发散O0例4判断级数sinn的敛散性n=1解利用等式sin(n+1)=sinn-cos1+cosn·sinl知,如果级数收敛,则sinn→0(n→oo),从而cosn→0(n→8).但sin? n + cos? n = 1.从而原级数发散2
j 1 q%E X∞ n=1 1 n · (n + 1) c'. h Sn = Xn k=1 1 k · (k + 1) = Xn k=1 ( 1 k − 1 k + 1 ) = 1 − 1 n + 1 → 1, (n → ∞) 6EÆc. j 2 q%E X∞ n=1 1 n2 c'. h n > 1 , 1 n2 1 2n + 1 2n + · · · + 1 2n = 1 2 , 6 Cauchy N?, E*. j 4 q%E X∞ n=1 sin n c'. h `5 sin(n + 1) = sin n · cos 1 + cos n · sin1 I, 8EÆc, ? sin n → 0(n → ∞), ( cos n → 0(n → ∞). sin2 n + cos2 n ≡ 1. (<E*. 2

00X例5>0,则当1时收敛,≥1时"发散(几何级数)。n=in=1证明1 -qnqSn=/k(0 n=in=1n=1(2)级数的敛散性与其有限项的值无关$2正项级数收敛与发散的判别法874如果an>0,则称an为正项级数。此时,部分和Sn=>Can关于n是n=l递增的.因此有Zan收敛台[Sn)收敛台(Sn)有上界(基本判别法)n=191判断>例 1 的敛散性n=i Vn. (n+ 1)解12Vn.(n+1)Vn(Vn+I+Vn)·Vn+IVn+I-Vn2.-Vn.Vn+111VnVn+i从而117Sn=2VkVk+1V/n+Vk·(k+1)-1-13
j 5 q > 0, ? q 0, ? X∞ n=1 an G#E. , .; Sn = Xn k=1 an 78 n @. 37 (bToX^) X∞ n=1 an Æc ⇔ {Sn} Æc ⇔ {Sn} 7R. j 1 q% X∞ n=1 1 √ n · (n + 1) c'. h 1 √ n · (n + 1) < 2 √ n( √ n + 1 + √ n) · √ n + 1 = 2 · √ n + 1 − √ n √ n · √ n + 1 = 2 1 √ n − 1 √ n + 1 ( Sn = Xn k=1 1 √ k · (k + 1) < 2 Xn k=1 1 √ k − 1 √ k + 1 = 2 1 − 1 √ n + 1 < 2. 3

故原级数收敛80oo设an和bn为正项级数,如果日常数M>0,定理1 (比较判别法)n=1n=1使得(*)an≤M·bn00则(1)bm收敛=→an收敛;(2)an发散→bm发散n=1n=1n=1n=1证明比较两级数的部分和并利用基本判别法即可注(1)条件(*)只要对充分大的n成立即可(2)(*)也可改写为an≤MbnM的存在性通常用求极限的办法得到,即如果an=入,lim2-+00bm则有8080()0<入+80时an和bn同敛散;n=in=1O0(i)入=0时bn收敛→an收敛:入=0时bn发散=an发n=1n=1n=12-1散.(3)另一个求n上界的方法是利用单调性,即如果bnbn+1an+1an)(合bnbnan80X00则(i)bn收敛→an收敛;(i)an发散→bn发散n=1n=ln=1n=i(4)(Cauchy判别法)在定理1中取bn=gn,得到如下结果如果n充分大时,an<9<1,则an收敛n=1如果存在无穷多个n,使得/an≥1,则an发散n=i4
6 0, an ≤ M · bn (∗) ? (1) X∞ n=1 bn Æc ⇒ X∞ n=1 an Æc; (2) X∞ n=1 an * ⇒ X∞ n=1 bn *. l OdE .;`5Aq+D[. (1) L (*) K,&. n ÆbD[. (2) (*) -[1$ an bn ≤ M M >'5yB!+, D8 limn→∞ an bn = λ, ?7 (i) 0 #^ 1 L{ bn = q n , P8: 8 n ., √n an ≤ q x'2 n, √n an ≥ 1, ? X∞ n=1 an *. 4

如果寻找9?还是求极限比较方便:设Tim an = 入.则>1时,级数发散(入=1时无法判别)n=1(5)(d'Alembert判别法)在(3)中取bn=q",得如下结果如果n 充分大时,n1时发散(=1时无法判别) - In(1 + 例2判别的敛散性/In2n=1解1-n(1+2)=100时原级数收敛;p<0时发散.显然p=0时级数也发散例4aER判别级数Zn!(三"的敛散性n=i5
8)D q ? >yB!O,: limn→∞ √n an = λ. ? λ 1 , E* (λ = 1 +q). (5) (d’Alembert q+) > (3) L{ bn = q n , P8: 8 n ., an+1 an ≤ q yB!\)D q O0. 8 limn→∞ an+1 an = λ, ? λ 1 * (λ = 1 +q). j 2 q X∞ n=1 1 n − ln(1 + 1 n ) c'. h 0 0 <EÆc; p < 0 *. ~, p = 0 E-*. j 4 x ∈ R qE X∞ n=1 n! · ( x n ) n c'. 5

解can+1Te(1 + )nan故oe时发散r=e时,1an+1 =e/(1 +n≥1ann故此时级数也发散1为发散级数又收敛.对于一般的实数aER在前面,我们说明了n2n=inn=i08.1如果判别=(α)的敛散性?这个问题可以用下面的办法解决n=ind定理2(积分判别法)设f(α)是定义在[1,+αo)上的非负单调下降函数an=f(n),n=1,2,..令F(α) =f(t)dt80则级数an的敛散性与数列(F(n))的敛散性相同,n=l证明因为f单调下降,故当n≤≤n+1时an+i=f(n+1)≤f()≤f(n)=an这说明f(t)dt ≤an,an+1≤从而Sn≤ai +F(n),F(n) ≤ Sn-1.80其中Sn=ak为部分和.因为Sn及F(n)都是单调增加的,故二者同时有界或无界,即an与(F(n))同敛散n=i81例5设aER,判断级数/的敛散性n=jn6
h an+1 an = x (1 + 1 n ) n → x e , 6 0 e *. x = e , an+1 an = e/(1 + 1 n ) n ≥ 1, 6E-*. >tn, moe X∞ n=1 1 n *E, X∞ n=1 1 n2 Æc. &8. a ∈ R, 8q X∞ n=1 1 na = ξ(a) c'? F2[/5n+QV. \i 2 (c_oX^) f(x) #2> [1, +∞) -0"M:, an = f(n), n = 1, 2, · · · . i F(x) = Z x 1 f(t)dt ?E X∞ n=1 an c':f {F(n)} c'". l 3 f "M, 6 n ≤ x ≤ n + 1 an+1 = f(n + 1) ≤ f(x) ≤ f(n) = an, Fo an+1 ≤ Z n+1 n f(t)dt ≤ an, ( Sn ≤ a1 + F(n), F(n) ≤ Sn−1. sL Sn = X∞ k=1 ak .;. 3 Sn C F(n) $"@J, 6)E7R @R, D X∞ n=1 an : {F(n)} c. j 5 a ∈ R, q%E X∞ n=1 1 na c'. 6

解a0时,考虑f(r)=一,f单调下降,且Inra=lf(t)dt =F(α) =t-adt =(rl-a_1),a111故当01时,F()→(r→+).这0-说明α≤1时,发散;α>1时是收敛n=inan=11例6 判断之, (n + 1)(log(n + 1)a 的敛散性, a E R.1发散,故原级数发散。下设a>0.解a≤0时,一般项≥而>n+12令1f(t) = (1 + t)(log(1 + t)a于单调下降,且log log(1 + r) - log log 2,a=1,dtF(α)=f(t)dt :(1 + t)(log(1 + t)g[(log(1+r)1-a -log 21-a] , a+ 1,因此a≤1时原级数发散:a>1时收敛1等,就可以由此得到新现在,如果在比较判别法中令bn=或nan·logn的判别法不过,我们这里介绍一个相当一般的判别法,由此出发再得到两个新的判别法80设an,bn为正项级数,如果n充分大时定理3 (Kummer)n=1n=1X11an≥入>0, 则an收敛;(1)bnbn+1an+1n=1o0011an≤0且bn发散,则an发散(2)bnbn+1an+1n=1n=1证明(1)条件可写为aan+1(n> N),an+1bn+17
h a ≤ 0 , .# 6→ 0, 6E*. a > 0 , Zj f(x) = 1 xa , f " M, v F(x) = Z x 1 f(t)dt = Z x 1 t −a dt = ln x, a = 1 1 1 − a (x 1−a − 1), a 6= 1 6 0 1 , F(x) → 1 a − 1 (x → +∞). F o a ≤ 1 , X∞ n=1 1 na *; a > 1 X∞ n=1 1 na Æc. j 6 q% X∞ n=1 1 (n + 1)(log(n + 1))a c', a ∈ R. h a ≤ 0 , .# ≥ 1 n + 1 , ( X 1 n *, 6 0. i f(t) = 1 (1 + t)(log(1 + t))a , f "M, v F(x) = Z x 1 f(t)dt = Z x 1 dt (1 + t)(log(1 + t))a = log log(1 + x) − log log 2, a = 1, 1 1 − a (log(1 + x))1−a − log 21−a , a 6= 1, 3 a ≤ 1 1 Æc. >, 8>Oq+Li bn = 1 na @ 1 n · log n , U[/6% q+. 9, mF_S.2".q+, 6*=d2 %q+. \i 3 (Kummer) X∞ n=1 an, X∞ n=1 bn G#E, 8 n . (1) 1 bn · an an+1 − 1 bn+1 ≥ λ > 0, ? X∞ n=1 an Æc; (2) 1 bn · an an+1 − 1 bn+1 ≤ 0 v X∞ n=1 bn *, ? X∞ n=1 an *. l (1) L[$ an+1 ≤ 1 λ an bn − an+1 bn+1 , (n > N), 7

这出明n=1ak-1a>Sn+10别an收敛;入1别an收敛;(i) nan+1n=1dn≤1别an发办(ii) n(an+1n=lRaabe判时法当然非有极限对部(略)8
Fo Sn+1 ≤ SN=1 + 1 λ nX =1 k=N+2 ak−1 bk−1 − ak bk = SN+1 + 1 λ aN+1 bN+1 − an+1 bn+1 ≤ SN+1 + 1 λ · aN+1 bN+1 . D {Sn} 7R, ( X∞ n=1 an Æc. (2) 6 1 bn · an an+1 − 1 bn+1 ≤ 0 I an an+1 ≤ bn bn+1 D { an bn } ", ( an z8g, 3E X∞ n=1 an *. (1) ;tn.+, λ >'5B!|q%O0: limn→∞ 1 bn · an an+1 − 1 bn+1 = λ, ? λ > 0 X∞ n=1 an Æc; λ 1 X∞ n=1 an Æc; (ii) n · an an+1 − 1 ≤ 1 X∞ n=1 an *. Raabe q+~-7B!& (k). 8

1则得如下判别法假设(4)(Gauss)取bnn.logn01an(*)= 1 ++o(n.lognnan+180则e>1时an收敛:6>(1) (2)(α > 0);=(a+ 1)(α+ 2).(α +n)(2n)!!2n +1n=1解(1)因为a+n+lanlim n.1)= lim n1)= α,n+1an+1n-on-o1故由Raabe判别法,α>1时原级数收敛,Q0时原级数收敛:s<0时发散9
(4) (Gauss) { bn = 1 n · log n , ?q+: K (∗) an an+1 = 1 + θ n + o( 1 n · log n ), ? θ > 1 X∞ n=1 an Æc; θ ≤ 1 E*. , 6 Raabe q+, K,Zj θ = 1 w&U[/e: limn→∞ 1 bn · an an+1 − 1 bn+1 = limn→∞ n · log n[1 + 1 n + o( 1 n · log n )] − (n + 1) · log(n + 1) = limn→∞ (n + 1)log n n + 1 = −1 0); (2) X∞ n=1 (2n1)!! (2n)!! s · 1 2n + 1 . h (1) 3 limn→∞ n · ( an an+1 − 1) = limn→∞ n · ( α + n + 1 n + 1 − 1) = α, 66 Raabe q+, α > 1 0 <EÆc; s ≤ 0 *. 9

83一般级数收敛与发散判别法在Taylor公式那一章中我们曾得到如下等式:11111"=1--$ ++- ++ - Z(-1)-142n - 1n=1o01111.- 2(-1)1.log2= 1 -2+34+nn=1上面两个级数的特点是正负项交替出现,我们把这样的数称为交错级数定理1(Leibniz)设an单调下降趋于0,则级数(-1)n-1an收敛n=1证明我们利用Cauchy准则来证明,考虑Sn+pSn:Sn+p- Sn = (-1)n · an+1+(-1)n+lan+2 +...+(-1)n+p-lan+p+1→(-1)n(Sn+p - Sn) = an+1 - an+2 + an+3 - an+4 +... +(-1)p-lan+p+1当p=2k-1时(-1)"(Sn+p-Sn) = (an+1 -an+2)+(an+3 -an+4)+...+(an+2k-1 -an+2k)≥0(-1)"(Sn+p-Sn)=an+1-(an+2-an+3)-(an+4-an+5)-...≤an+1因此ISn+p-Sn/≤an+1 →0, (n -→0) (*)当p=2k时,类似地可证上式仍成立因此原级数收敛注在(*)中令p一→8得[S-Sn/≤an+1,其中S=(-1)n-1an,这是交错级数的误差估计n=11例1级数(-1)"-1.云收敛(0)VnVnn=1为了得到更一般的结果,我们需要一个求和变换的技巧10
§3 ySdrqk|]poX^ > Taylor 4 p.CLmA : π 4 = 1 − 1 3 + 1 5 − 1 7 + · · · = X∞ n=1 (−1)n−1 1 2n − 1 , log2 = 1 − 1 2 + 1 3 − 1 4 + · · · = X∞ n=1 (−1)n−1 · 1 n . nd2E!G0#N , mF+ NE. \i 1 (Leibniz) an "Mz8 0, ?E X∞ n=1 (−1)n−1 an Æc. l m`5 Cauchy N?\Ho. Zj Sn+p − Sn: Sn+p − Sn = (−1)n · an+1 + (−1)n+1an+2 + · · · + (−1)n+p−1 an+p+1 ⇒ (−1)n (Sn+p − Sn) = an+1 − an+2 + an+3 − an+4 + · · · + (−1)p−1 an+p+1 p = 2k − 1 , (−1)n (Sn+p − Sn) = (an+1 − an+2) + (an+3 − an+4) + · · · + (an+2k−1 − an+2k) ≥ 0 (−1)n (Sn+p − Sn) = an+1 − (an+2 − an+3) − (an+4 − an+5) − · · · ≤ an+1 3 |Sn+p − Sn| ≤ an+1 → 0, (n → ∞) (∗) p = 2k , ][H Æb. 3 (*) Li p → ∞ |S − Sn| ≤ an+1, sL S = X∞ n=1 (−1)n−1 an, FNE5H. j 1 E X∞ n=1 (−1)n−1 · 1 √ n Æc (∵ 1 √ n & 0). e3.P8, m(,.2y;?Gu. 10