免费下载网址htt:/ jiaoxue5uys168com/ 第五章一元一次方程1认识一元一次方程第1课时 本章教材分析 1.内容结构特点 为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生 的抽象概括能力,本章内容的呈现大都以求解一个实际问题为切入点,让学生经历抽象符号 交换、应用等活动,从中培养学生解决问题的兴趣和能力,增强学生的思维水平和应用数学 知识去解决实际问题的意识 2.教材的地位及作用 方程是中学数学的重要内容,一元一次方程作为内容最基本、形式最简单的方程,在初 中代数中占有极其重要的地位.本章内容在整个代数知识的学习中起着承上启下的作用 方面是对已学过的代数式、有理数的运算、整式的加减等知识的巩固和加深,另一方面又为 今后学习方程组、分式方程、函数等知识奠定基础,尤其是一元一次方程的应用,充分体现 了数学知识来源于实践,又指导实践的辩证关系.学生在“建模”“理论联系实际”等数学 思想的学习中,既可以增强应用数学的意识,提高分析问题、解决问题的能力,又可以养成 学以致用的好习惯. 3.教学重点与难点 教学重点: (1)理解等式的两条基本性质:会用字母表示它们,并能熟练运用 (2)熟练掌握一元一次方程的基本解法 (3)能根据实际生活背景列一元一次方程解应用题 教学难点:通过对实际问题的分析,正确理解题目中隐含的等量关系,列出方程 4.教学目标 (1)根据具体问题中的数量关系,经历形成方程模型、解方程和运用方程解决实际问题 的过程;体会方程是刻画现实世界的有效数学模型 (2)了解一元一次方程及其相关概念:会解一元一次方程(数字系数) (3)能以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释 结果的实际意义及合理性,提高分析问题、解决问题的能力 (4)在经历建立方程模型解决实际问题的过程中,体会数学的应用价值 5.教学建议 (1)教学应结合具体内容多采用“问题情境—一建立模型一一应用拓展”的模式展开, 让学生经历方程的形成与应用的过程,从而更好地理解方程的意义,发展应用数学的意识和 能力 (2)有效的数学学习不是单纯的模仿和记忆,解方程的步骤也没有统一模式,教师应注 意引导学生选择合理的解方程步骤,关注他们的个性发展 (3)运用方程解决实际问题时,注意启发学生从多角度寻找等量关系,关注他们能否恰 当地转化和分析量与量之间的关系,并鼓励学生大胆质疑和创新 6.课时分配 1认识一元一次方程 2课时 2求解一元一次方程 3课时 3应用一元一次方程—一水箱变高了 1课 4应用一元一次方程—打折销售 1课时 次方程——“希望工程”义演 1课时 次方程—一追赶小明 认识一元一次方程 第1课时 教学重点与难点 教学重点 1.一元一次方程的概念 2.通过现实情境建立方程模型的思想. 教学难点 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 第五章 一元一次方程 1 认识一元一次方程第 1 课时 1.内容结构特点 为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生 的抽象概括能力,本章内容的呈现大都以求解一个实际问题为切入点,让学生经历抽象符号 交换、应用等活动,从中培养学生解决问题的兴趣和能力,增强学生的思维水平和应用数学 知识去解决实际问题的意识. 2.教材的地位及作用 方程是中学数学的重要内容,一元一次方程作为内容最基本、形式最简单的方程,在初 中代数中占有极其重要的地位.本章内容在整个代数知识的学习中起着承上启下的作用,一 方面是对已学过的代数式、有理数的运算、整式的加减等知识的巩固和加深,另一方面又为 今后学习方程组、分式方程、函数等知识奠定基础,尤其是一元一次方程的应用,充分体现 了数学知识来源于实践,又指导实践的辩证关系.学生在“建模”“理论联系实际”等数学 思想的学习中,既可以增强应用数学的意识,提高分析问题、解决问题的能力,又可以养成 学以致用的好习惯. 3.教学重点与难点 教学重点: (1)理解等式的两条基本性质;会用字母表示它们,并能熟练运用. (2)熟练掌握一元一次方程的基本解法. (3)能根据实际生活背景列一元一次方程解应用题. 教学难点:通过对实际问题的分析,正确理解题目中隐含的等量关系,列出方程. 4.教学目标 (1)根据具体问题中的数量关系,经历形成方程模型、解方程和运用方程解决实际问题 的过程;体会方程是刻画现实世界的有效数学模型. (2)了解一元一次方程及其相关概念;会解一元一次方程(数字系数). (3)能以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释 结果的实际意义及合理性,提高分析问题、解决问题的能力. (4)在经历建立方程模型解决实际问题的过程中,体会数学的应用价值. 5.教学建议 (1)教学应结合具体内容多采用“问题情境——建立模型——应用拓展”的模式展开, 让学生经历方程的形成与应用的过程,从而更好地理解方程的意义,发展应用数学的意识和 能力. (2)有效的数学学习不是单纯的模仿和记忆,解方程的步骤也没有统一模式,教师应注 意引导学生选择合理的解方程步骤,关注他们的个性发展. (3)运用方程解决实际问题时,注意启发学生从多角度寻找等量关系,关注他们能否恰 当地转化和分析量与量之间的关系,并鼓励学生大胆质疑和创新. 6.课时分配 1 认识一元一次方程 2 课时 2 求解一元一次方程 3 课时 3 应用一元一次方程——水箱变高了 1 课时 4 应用一元一次方程——打折销售 1 课时 5 应用一元一次方程——“希望工程”义演 1 课时 6 应用一元一次方程——追赶小明 1 课时 1 认识一元一次方程 第 1 课时 教学重点与难点 教学重点: 1.一元一次方程的概念. 2.通过现实情境建立方程模型的思想. 教学难点:
免费下载网址htt:/ jiaoxue5uys168com/ 1.对一元一次方程的概念、特征的理解 从现实情境中提炼等量关系. 学情分析 认知基础:因为在小学阶段学习过简易方程,所以七年级的学生对方程这个模型并不陌 生.不过与初中的要求相比,已学过的这些知识的规范性、严谨性还不够,对知识的理解比 较表层,而且受小学算术解法的影响,大部分学生还没有真正体会到方程在解决实际问题时 的优越性和重要性 活动经验基础:教材为学生提供了许多生动有趣的现实情境,而且七年级学生的思维活 跃,乐意接受新事物,喜欢参与探索活动,只要激发起兴趣,本节课要贯彻的数学思想就能 较好的实施下去 教学目标 1.通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义 能根据给出的现实情境,找出其中的等量关系列出方程 3.通过观察,归纳出一元一次方程的概念 4.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力 教学方法 先通过设置丰富的问题情境吸引学生思考、讨论,克服算术解法的思维定势影响,突出 建模思想”,并引导学生归纳概括相关概念,再利用辨析题,用对比的方法让学生进一步 加深对方程、一元一次方程概念的认识,增强他们的判断能力和理解能力 教学过程 师生互动,游戏引入 设计说明 通过联系生活中的实际问题,以互动游戏的方式导入新课,可以使学生在心理上缩短 与教师间的距离,以放松、愉快的状态顺利开始新课,同时还激发了学生的好奇心和主动学 习的欲望,为引出方程的概念作准备 教师和同学们互动做两个游戏: 游戏一:圈出日历中一个竖列上相邻的三个日期,把它们的和告诉我,我能马上知道这 三天分别是几号 此游戏可由两名学生分别说出任意三个日期的和,教师回答结果 游戏二:把你的年龄乘2减5的得数告诉我,我就知道你今年几岁 此游戏可安排两组学生尝试完成 问题1:你能说出其中的奥秘吗? 学生进行小组活动,通过观察分析特征,抓住问题中的等量关系 问题2:你能用符号语言表述其中的数量关系吗? 学生能够发现、找到的规律是多样的.以游戏一为例,当确定三个日期的和为45时, 通常会有以下几种形式:(x-7)+x+(x+7)=45(其中x为竖列三个数中的第二个);x+ (x+7)+(x+14)=45(其中x为竖列三个数中的第一个):x+(x-7)+(x-14)=45(其中x 为竖列三个数中的第三个),教师应及时鼓励和评价学生的各种答案,并使学生在倾听别人 的想法、意见的同时,不断完善自己的认识 随着问题的逐一解答,学生已经联想到以前学过的方程知识,这时教师就可以顺势切入 课题,并请学生回顾并口述方程的概念了 含有未知数的等式叫做方程 随堂练习1:判断下列各式中哪些是方程? (1)2x-3=5;(2)1-8=x;(3)x-3=2x+7;(4)x-(x-1)=1:(5)y2;(6)3-2 答案:(1)(2)(3)(4) 教学说明 本节课采用师生互动游戏的形式引入新课,学生积极参与到熟悉的情境活动中,通过饶 有兴趣的思考,自然而然的渴望知道其中的奥秘,进而被教师带入课堂学习,带进了神奇的 方程世界.由于七年级的学生性格活泼,参与热情高,易调动,所以课堂气氛活跃,师生交 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 1.对一元一次方程的概念、特征的理解. 2.从现实情境中提炼等量关系. 学情分析 认知基础:因为在小学阶段学习过简易方程,所以七年级的学生对方程这个模型并不陌 生.不过与初中的要求相比,已学过的这些知识的规范性、严谨性还不够,对知识的理解比 较表层,而且受小学算术解法的影响,大部分学生还没有真正体会到方程在解决实际问题时 的优越性和重要性. 活动经验基础:教材为学生提供了许多生动有趣的现实情境,而且七年级学生的思维活 跃,乐意接受新事物,喜欢参与探索活动,只要激发起兴趣,本节课要贯彻的数学思想就能 较好的实施下去. 教学目标 1.通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义. 2.能根据给出的现实情境,找出其中的等量关系列出方程. 3.通过观察,归纳出一元一次方程的概念. 4.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力. 教学方法 先通过设置丰富的问题情境吸引学生思考、讨论,克服算术解法的思维定势影响,突出 “建模思想”,并引导学生归纳概括相关概念,再利用辨析题,用对比的方法让学生进一步 加深对方程、一元一次方程概念的认识,增强他们的判断能力和理解能力. 教学过程 一、师生互动,游戏引入 设计说明 通过联系生活 中的实际问题,以互动游戏的方式导入新课,可以使学生在心理上缩短 与教师间的距离,以放松、愉快的状态顺利开始新课,同时还激发了学生的好奇心和主动学 习的欲望,为引出方程的概念作准备. 教师和同学们互动做两个游戏: 游戏一:圈出日历中一个竖列上相邻的三个日期,把它们的和告诉我,我能马上知道这 三天分别是几号. 此游戏可由两名学生分别说出任意三个日期的和,教师回答结果. 游戏二:把你的年龄乘 2 减 5 的得数告诉我,我就知道你今年几岁. 此游戏可安排两组学生尝试完成. 问题 1:你能说出其中的奥秘吗? 学生进行小组活动,通过观察分析特征,抓住问题中的等量关系. 问题 2:你能用符号语言表述其中的数量关系吗? 学生能够发现、找到的规律是多样的.以游戏一为例,当确定三个日期的和为 45 时, 通常会有以下几种形式:(x-7)+x+(x+7)=45(其中 x 为竖列三个数中的第二个) ;x+ (x+7)+(x+14)=45(其中 x 为竖列三个数中的第一个);x+(x-7)+(x-14)=45(其中 x 为竖列三个数中的第三个),教师应及时鼓励和评价学生的各种答案,并使学生在倾听别人 的想法、意见的同时,不断完善自己的认识. 随着问题的逐一解答,学生已经联想到以前学过的方程知识,这时教师就可以顺势切入 课题,并请学生回顾并口述方程的概念了. 含有未知数的等式叫做方程. 随堂练习 1:判断下列各式中哪些是方程? (1)2x-3=5;(2)1-8=x;(3)x-3=2x+7;(4)x-(x-1)=1;(5)y-2;(6)3-2 =1. 答案:(1)(2)(3)(4). 教学说明 本节课采用师生互动游戏的形式引入新课,学生积极参与到熟悉的情境活动中,通过饶 有兴趣的思考,自然而然的渴望知道其中的奥秘,进而被教师带入课堂学习,带进了神奇的 方程世界.由于七年级的学生性格活泼,参与热情高,易调动,所以课堂气氛活跃,师生交
免费下载网址ht:/ jiaoxue5uys68com/ 流融洽而热烈. 出示随堂练习的目的是通过对几道题目的判断,加强学生对方程概念的理解. 、讲授新课 设计说明 教科书中提供了多个实际问题,通过分析都可以得到一元一次方程,由此既使学生体 会到方程作为实际问题的数学模型的作用,又引导学生对一元一次方程的概念进行了探索 1.问题引入 问题1:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约5厘米, 大约几周后树苗长高到1米? 利用课件动画演示树苗的生长过程,设置问题串引导:树苗原高是多少?长高的部分是 多少?如果设x周后树苗长高到1米,那么可以得到方程为 答案:树苗原高40cm,长高部分是5xcm,方程为40+5x=100. 因为题目中几个数量的单位不统一,所以学生列出方程的形式也不完全一样,比如:0.4 +0.05x=1,在教学中应多鼓励学生发表自己的见解,与其他同学一起交流评价 问题2:根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10 万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了 147.30%.问:2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度? 本题数据较多,辨别有用数据是重要环节,弄清“单位1”是关键.如果设2000年第 五次全国人口普查时每10万人中约有x人具有大学文化程度,那么可以得到方程为 答案:(1+147.30%)x=8930 问题3:某长方形操场的面积为5850m2,长和宽之差为25米,这个操场的长与宽分 别是多少米? 先用课件展示一些操场的图片,激发学生的学习兴趣,同时教师做适当讲解,让学生 认识到场地的整体设计、座位的安排等等都和数学有着密切联系,使学生认识到现实生活中 处处有数学 本题的做法可以让学生仿照前面教师的编排,自己设计问题串分析题意.如果设这个足 球场的宽为x米,那么长为 米,由此可得到方程为 答案:x+25x(x+25)=5850 2.归纳概念 议一议:由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程? 建议学生将上面列得的方程集中放在一起,以便于观察它们的特点,分析时可以引导他 们从未知数的个数及未知数的指数两个角度进行思考,并要求学生探讨后用自己的语言进行 描述、表达,并进行交流.在讨论中发现学生能够积极阐述自己的观点,通过交流、修改 补充,最终形成对一元一次方程概念的共性的认识 定义:在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做 元一次方程 使方程左、右两边的值相等的未知数的值,叫做方程的解 随堂练习2:指出下列方程中,哪些是一元一次方程? (1)xy=x+1:(2)-+1=7;(3)x=5 (0)-x=0:(5)3(x+1)-5(x+2)=4:(0x=0 答案:(3)(5)(6) 教学说明 本环节的“问题引入”首先利用教材的实例,让学生在熟悉的问题情境中,结合设计的 问题串逐一分析、思考,找到题目中隐臧的等量关系,然后利用选出的未知数,列得方程.在 这个训练中通过把实际问题转化为数学问题,较好地完成了使学生经历“建立数学模型”这 数学化的过程,也加深了学生对方程有效性的体会.接着趁热打铁,引导学生展开对所列 方程的共同点的讨论,归纳出一元一次方程的概念,实现了由感性到理性的上升,这样逐渐 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 流融洽而热烈. 出示随堂练习的目的是通过对几道题目的判断,加强学生对方程概念的理解. 二、讲授新课 设计说明 教科书中提供了多个实际问题,通过分析都可以得到一元一次方程,由此既使学生体 会到方程作为实际问题的数学模型的作用,又引导学生对一元一次方程的概念进行了探索. 1.问题引入 问题 1:小颖种了一株树苗,开始时树苗高为 40 厘米,栽种后每周树苗长高约 5 厘米, 大约几周后树苗长高到 1 米? 利用课件动画演示树苗的生长过程,设置问题串引导:树苗原高是多少?长高的部分是 多少?如果设 x 周后树苗长高到 1 米,那么可以得到方程为________. 答案:树苗原高 40 cm,长高部分是 5x cm,方程为 40+5x=100. 因为题目中几个数量的单位不统一,所以学生列出方程的形式也不完全一样,比如:0.4 +0.05x=1,在教学中应多鼓励学生发表自己的见解,与其他同学一起交流评价. 问题 2:根据第六次全国人口普查统计数据,截至 2010 年 11 月 1 日 0 时,全国每 10 万人中具有大学文化程度的人数为 8 930 人,与 2000 年第五次全国人口普查相比增长了 147.30%.问:2000 年第五次全国人口普查时每 10 万人中约有多少人具有大学文化程度? 本题数据较多,辨别有用数据是重要环节,弄清“单位 1”是关键.如果设 2000 年第 五次全国人口普查时每 10 万人中约有 x 人具有大学文化程度,那么可以得到方程为 ________. 答案:(1+147.30%)x=8 930 问题 3:某长方形操场的面积为 5 850 m2,长和宽之差为 25 米,这个操场的长与宽分 别是多少米? 先用课件展示一些操场的图片,激发学生的学习兴趣,同时教师做适当讲解,让学 生 认识到场地的整体设计、座位的安排等等都和数学有着密切联系,使学生认识到现实生活中 处处有数学. 本题的做法可以让学生仿照前面教师的编排,自己设计问题串分析题意.如果设这个足 球场的宽为 x 米,那么长为________米,由此可得到方程为____________________. 答案:x+25 x(x+25)=5 850 2.归纳概念 议一议:由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程? 建议学生将上面列得的方程集中放在一起,以便于观察它们的特点,分析时可以引导他 们从未知数的个数及未知数的指数两个角度进行思考,并要求学生探讨后用自己的语言进行 描述、表达,并进行交流.在讨论中发现学生能够积极阐述自己的观点,通过交流、修改、 补充,最终形成对一元一次方程概念的共性的认识. 定义:在一个方程中,只含有一个未知数,且未知数的指数都是 1,这样的方程叫做一 元一次方程. 使方程左、右两边的值相等的未知数的值,叫做方程的解. 随堂练习 2:指出下列方程中,哪些是一元一次方程? (1)xy=x+1;(2)2 x +1=7;(3)x=5; (4)y 2-x=0;(5)3(x+1)- 5(x+2) 2 =4;(6)x=0. 答案:(3)(5)(6) 教学说明 本环节的“问题引入”首先利用教材的实例,让学生在熟悉的问题情境中,结合设计的 问题串逐一分析、思考,找到题目中隐藏的等量关系,然后利用选出的未知数,列得方程.在 这个训练中通过把实际问题转化为数学问题,较好地完成了使学生经历“建立数学模型”这 一数学化的过程,也加深了学生对方程有效性的体会.接着趁热打铁,引导学生展开对所列 方程的共同点的讨论,归纳出一元一次方程的概念,实现了由感性到理性的上升,这样逐渐
免费下载网址htt:/ jiaoxue5uys168com/ 提高思维要求,较好地突出了重点,突破了难点 双基训练,巩固应用 设计说明 设计的题目以落实本节重点知识为目的,让学生充分理解方程、方程的解、一元一次方 程的概念,并会使用,以形成初步技能 1.下列各题中,哪些是方程?哪些是一元一次方程? (1)3x+1=5;(2)1+a=2:(3)2a+3b;(4)3x=4-5:(5)x+1>0 +4=2x:(8)y2+3y=0:(9)9x-y=2 答案:方程为(1)(2)(4)(6)(7)(8)(9):一元一次方程为(1)(2)(4)(7) 2.下列方程中,解为-2的是() A.3x-2=2x B.4x-1=2x+3 C.3x+1=2x-1 D.5x-3=6x-2 答案 3.如果5x2=8是 次方程,那么m= 答案:3 4.若关于x的方程ax-6=2的解为x=2,则a= 答案:4 教学说明 练习1和练习3主要考查学生对方程和一元一次方程两个概念的判断与理解,判断是否 为方程的重点在于“等式”和“含有未知数”这两个要点,所以(3)(5)因为不含等号而不符 合要求,但同时还要注意(2)中因选择a这个并不常用的未知数形式,而容易被学生漏选 判断是否为一元一次方程的重点则要放在未知数的个数、系数和指数三个问题上,遇到像 (8)(9)含有二元或二次情况的首先排除,而像(6)这样分母中含有未知数的先直接告诉学生 它一定不是一元一次方程,留下悬念,指明这是今后将要学习的另一种方程类型,但没有必 要详细解释.但从实际教学中发现,对(6)这种方程类型的判断仍是一个比较集中的出错点 还需多次强化.练习2和练习4直接考查方程的解的概念,比较容易 四、总结反思 问题1:本节课你在知识方面有哪些收获? 答:一元一次方程的概念;用方程表达实际问题中的等量关系 问题2:在进行一元一次方程的判断时应注意哪几个关键? 答:(1)是只含一个未知数的整式方程:(2)未知数的系数不为零;(3)未知数的指数是 问题3:通过今天的学习,你想进一步探究的问题是什么? 答:如何解方程.(为下节课埋下伏笔) 评价与反思 1.本节课采用“创设问题情境一一建立数学模型一一解释、应用与拓展”的过程来进 行.教师通过猜日历、猜年龄两个游戏,激发学生兴趣,构建新旧知识的衔接,让学生投入 到解决问题的实际活动中,全方位展示自己的思维,使方程的出现自然流畅.学生自觉运用 方程模型思想去研究、探索,经历数学建模的过程,从而初步体会这种数学思想方法,提高 了应用意识.同时辅助使用电教手段展示相应题目并配制简单画面,既节省了时间,又让 学生有一些直观体验,收到了比较好的效果 2.体验是人生的一大财富,在数学学习中,体验越丰富,记忆就越深刻,掌握则越牢 固.本节课教师根据学生的心理特点,引导学生开展形式多样的活动(如情境中的游戏活动 自主探索中的小树慢慢长高、操场的长与宽的探究活动:;辨析与硏讨中的小组合作学习活 动等),让学生在活动中感知、体验方程是刻画现实世界的最有效的数学模型,从而理解 元一次方程的含义,体会应用方程解决现实生活中实际问题的作用,激发学生学习数学的积 极情感,使学生产生后续学习的内在动力 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 提高思维要求,较好地突出了重点,突破了难点. 三、双基训练,巩固应用 设计说明 设计的题目以落实本节重点知识为目的,让学生充分理解方程、方程的解、一元一次方 程的概念,并会使用,以形成初步技能. 1.下列各题中,哪些是方程?哪些是一元一次方程? (1)3x+1=5;(2)1+a=2;(3)2a+3b;(4)3x=4-5;(5)x+1>0; (6)2 x +2=5;(7)3x-1 2 +4=2x;(8)y 2+3y=0;(9)9x-y=2. 答案:方程为(1)(2)(4)(6)(7)(8)(9);一元一次方程为(1)(2)(4)(7). 2.下列方程中,解为-2 的是( ) A.3x-2=2x B.4x-1=2x+3 C.3x+1=2x-1 D.5x-3=6x-2 答案:C 3.如果 5x m-2=8 是一元一次方程,那么 m=________. 答案:3 4.若关于 x 的方程 ax-6=2 的解为 x=2,则 a=________. 答案:4 教学说明 练习 1 和练习 3 主要考查学生对方程和一元一次方程两个概念的判断与理解,判断是否 为方程的重点在于“等式”和“含有未知数”这两个要点,所以(3)(5)因为不含等号而不符 合要求,但同时还要注意(2)中因选择 a 这个并不常用的未知数形式,而容易被学生漏选; 判断是否为一元一次方程的重点则要放在未知数的个数、系数和指数三个问题上,遇到像 (8)(9)含有二元或二次情况的首先排除,而像(6)这样分母中含有未知数的先直接告诉学生 它一定不是一元一次方程,留下悬念,指明这是今后将要学习的另一种方程类型,但没有必 要详细解释.但从实际教学中发现,对(6)这种方程类型的判断仍是一个比较集中的出错点, 还需多次强化.练习 2 和练习 4 直接考查方程的解的概念,比较容易. 四、总结反思 问题 1:本节课你在知识方面有哪些收获? 答:一元一次方程的概念;用方程表达实际问题中的等量关系. 问题 2:在进行一元一次方程的判断时应注意哪几个关键? 答:(1)是只含一个未知数的整式方程;(2)未知数的系数不为零;(3)未知数的指数是 1. 问题 3:通过今天的学习,你想进一步探究的问题是什么? 答:如何解方程.(为下节课埋下伏笔) 评价与反思 1.本节课采用“创设问题情境——建立数学模型——解释、应用与拓展”的过程来进 行.教师通过猜日历、猜年龄两个游戏,激发学生兴趣,构建新旧知识的衔接,让学生投入 到解决问题的实际活动中,全方位展示自己的思维,使方程的出现自然流畅.学生自觉运用 方程模型思想去研究、探索,经历数学建模的过程,从而初步体会这种数学思想方法,提高 了应用意识.同时辅助使用电教手段展示相应题目并配制简单画 面,既节省了时间,又让 学生有一些直观体验,收到了比较好的效果. 2.体验是人生的一大财富,在数学学习中,体验越丰富,记忆就越深刻,掌握则越牢 固.本节课教师根据学生的心理特点,引导学生开展形式多样的活动(如情境中的游戏活动; 自主探索中的小树慢慢长高、操 场的长与宽的探究活动;辨析与研讨中的小组合作学习活 动等),让学生在活动中感知、体验方程是刻画现实世界的最有效的数学模型,从而理解一 元一次方程的含义,体会应用方程解决现实生活中实际问题的作用,激发学生学习数学的积 极情感,使学生产生后续学习的内在动力.