免费下载网址htt:/ jiaoxue5uys168com/ 14.2立方根 、教材分析 在前两节课,学生已经学习了数的平方根,这为过渡到本节课的学习起着铺垫作用。通过 本节课的学习,可为后面学习实数奠定基础 学情分析 1.由于学生已有了学了平方根的基础,所以本节课可引导学生用类比的方法学习立方根 的有关知识,在这个过程中让学生领会类比思想:2.在对平方根、立方根进行区别的过程 中可发展学生的求同求异思维,使他们能在复杂环境中明辨是非 三、教学目标 1.了解数的立方根的概念,会用根号表示一个数的立方根 2.了解开立方与立方是互逆的运算,会利用这个互逆运算关系求一个数的立方根 3.掌握立方根的性质 4区分立方根与平方根的不同 四、重点、难点 重点:理解立方根的概念,会表示、会求一个数的立方根,立方根的性质 难点:了解开立方与立方是互逆的运算,区分立方根与平方根的不同 五、教学设计 教学 教学活动设计 设计意图说明 环节 问题:1.魔方棱长为5cm,则体积为多少? 由实际问题 创设 2要制作体积为96cm3的魔方,棱长应为多少? 引入立方根的概 问题 情境师:问题1的实质是知道一个数,求这个数的立方 念,使学生感受学 问题2的实质是知道一个数,求这个数的立方根 习立方根的意义 今天我们就来学习有关立方根的知识 填空:根据x3的值,你能够求出相应的x的值吗? 27 27 64-64 10000 125 让学生联系平方 观察思考 思考:你能类比平方根的定义给出立方根的定义吗? 根的概念,类比地 给出立方根的概 一般地如果一个数x的立方等于即x2=a,那么这个念,初步体会立方 数x就叫做a的立方根.也叫做a的三次方根 根与平方根的联 系与区别。 例如64的立方根是4, 27 的立方根是 12 0的立方根是0 问题:你能对照定义举一些立方根的例子吗? 大家谈谈:(小组讨论) 先让学生独 个正数有两个平方根,它们互为相反数。一个正数立探究,再小组合 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 14.2 立方根 一、教材分析 在前两节课,学生已经学习了数的平方根,这为过渡到本节课的学习起着铺垫作用。通过 本节课的学习,可为后面学习实数奠定基础。 二、学情分析 1.由于学生已有了学了平方根的基础,所以本节课可引导学生用类比的方法学习立方根 的有关知识,在这个过程中让学生领会类比思想;2.在对平方根、立方根进行区别的过程 中可发展学生的求同求异思维,使他们能在复杂环境中明辨是非. 三、教学目标 1.了解数的立方根的概念,会用根号表示一个数的立方根. 2.了解开立方与立方是互逆的运算,会利用这个互逆运算关系求一个数的立方根. 3.掌握立方根的性质. 4.区分立方根与平方根的不同. 四、重点、难点 重点:理解立方根的概念,会表示、会求一个数的立方根,立方根的性质. 难点:了解开立方与立方是互逆的运算,区分立方根与平方根的不同. 五、教学设计 教学 环节 教学活动设计 设计意图说明 创设 问题 情境 问题:1.魔方棱长为 5 cm ,则体积为多少? 2.要制作体积为 96 3 cm 的魔方,棱长应为多少? 师:问题 1 的实质是知道一个数,求这个数的立方; 问题 2 的实质是知道一个数,求这个数的立方根. 今天我们就来学习有关立方根的知识 由实际问题 引入立方根的概 念,使学生感受学 习立方根的意义. 观 察 思 考 填空:根据 3 x 的值,你能够求出相应的 x 的值吗? 3 x :64 -64 27 125 27 125 − 1000 -1000 0 x : 思考:你能类比平方根的定义给出立方根的定义吗? 一般地,如果一个数 x 的立方等于 a,即 3 x a = ,那么这个 数 x 就叫做 a 的立方根.也叫做 a 的三次方根. 例如 64 的立方根是 4, 27 125 − 的立方根是 3 5 − , 0 的立方根是 0 问题:你能对照定义举一些立方根的例子吗? 让学生联系平方 根的概念,类比地 给出立方根的概 念,初步体会立方 根与平方根的联 系与区别。 一 大家谈谈:(小组讨论) 1. 一个正数有两个平方根,它们互为相反数。一个正数 先让学生独 立探究,再小组合
免费下载网址http:/jiaoxue5u.ys168.com/ 有几个立方根? 作交流,给出立方 2.负数没有平方根,负数有立方根吗?如果有,一个负根的性质 数有几个立方根 在此过程中 的立方根是什么数? 尽可能地让学生 通过具体实例,让学生在独立思考的基础上,进行交流思考和交流,以发 由学生概括总结出立方根的性质 展学生的辨析和 一个正数有一个正的立方根 判断能力 一个负数有一个负的立方根 0的立方根是0 数a的立方根用符号“Va”来表示,读作“三次根号a 其中a是被开方数,3是根指数,“3”不能省略. 举例:如v64=4-64=-4 √0=0 1255 求一个数的立方根的运算叫做开立方 开立方与立方互为逆运算关系.借助立方运算,我们可以求 一个数的立方根 例题着眼于弄清 例1求下列各数的立方根 立方根的概念,因 (3)-0.064. 此不仅用立方的 例 方法求立方根,且 题|解:()因为(-2)=-8,所以-8的立方根是-2,即 在书写上采用了 语言叙述和符号 -8=-2 表示相互补充的 方式,让学生学会 析 对于例题(1),可由学生口答老师给出规范的解题格式对从立方根与立方 于例题(2)、(3)让学生仿照(1)的解题过程自己写出然后再由是互逆运算中寻 学生互相纠错 找解题途径 填表并讨论:开平方运算与开立方运算(被开方数的取值 和运算结果)有何不同? 学生讨论,自己体 会平方根与立方 根的区别 大|数开方数 正数 有两个互为相反数有一个是正数 教学中应该给予 家谈谈 学生充分思考、 负数 没有平方根 有一个是负数 |过论的时间,让他 结出开平方与开 由学生填表并讨论后得出结论 立方的区别 1.只有非负数才有平方根,而任何数都能开立方 2.正数有两个平方根而任何数都有一个立方根 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 起 探 究 有几个立方根? 2. 负数没有平方根,负数有立方根吗?如果有,一个负 数有几个立方根? 3. 0 的立方根是什么数? 通过具体实例,让学生在独立思考的基础上,进行交流. 由学生概括总结出立方根的性质: 一个正数有一个正的立方根. 一个负数有一个负的立方根. 0 的立方根是 0. 数 a 的立方根用符号“ 3 a ”来表示,读作“三次根号 a”. 其中 a 是被开方数,3 是根指数,“3”不能省略. 举例:如 3 64 4 = 3 − = − 64 4 3 27 3 125 5 = 3 0 0 = . 求一个数的立方根的运算叫做开立方. 开立方与立方互为逆运算关系.借助立方运算,我们可以求 一个数的立方根. 作交流,给出立方 根的性质 .在此过程中 尽 可能地让学生 思考和交流,以发 展学生的辨析和 判断能力. 例 题 解 析 例 1 求下列各数的立方根. (1)-8; (2) 8 27 (3)-0.064. 解: (1)因为 3 ( 2) 8 − = − ,所以 −8 的立方根是−2 ,即 3 − = − 8 2 . 对于例题(1),可由学生口答,老师给出规范的解题格式,对 于例题(2)、(3)让学生仿照(1)的解题过程自己写出.然后再由 学生互相纠错. 例题着眼于弄清 立方根的概念,因 此不仅用立方的 方法求立方根,且 在书写上采用了 语言叙述和符号 表示相互补充的 方式,让学生学会 从立方根与立方 是互逆运算中寻 找解题途径. 大 家 谈 谈 填表并讨论:开平方运算与开立方运算(被开方数的取值 和运算结果)有何不同? 被开方数 平方根 立方根 正数 有两个互为相反数 有一个是正数 负数 没有平方根 有一个是负数 零 零 零 由学生填表并讨论后得出结论: 1.只有非负数才有平方根,而任何数都能开立方. 2.正数有两个平方根,而任何数都有一个立方根. 学生讨论,自己体 会平方根与立方 根的区别。 教学中应该给予 学生充分思考 、 讨论的时间,让他 们自己探索并总 结出开平方与开 立方的区别
免费下载网址http://jiaoxue5u.ys168.com/ 练习判断 ()8的立方根是士2(2)负数没有立方根 (3)4的平方根是2(4)-8的立方根是-2 (5)立方根是它本身的数只有零 (6)一个数有立方根,则它一定有平方根 合作探究 √-8 8= 可让学生独立 完成探究题,再小 -y27= 组交流,并不妨请 同学再举几个例 √-512 子,探索从上面的 作 观察上面三组算式,总结出互为相反数的两个数a与一a的计算结果中可以 立方根的关系吗? 得到什么结论 由学生思考并小组讨论后得出结论 在这个过程 中让学生体会从 -a=-a(a>0 特殊到一般的思 求一个负数的立方根,可以先求这个负数的绝对值的立方 根,再取它的相反数 例2求下列各式的值 (1)-729 (2)512 例 (3)√-0027 题 216 及时巩固所 解 学知识 析 729=-729=-9= 对于例题(1),可由学生口答,老师给出规范的解题格式,对 于例题(2)、(3)、(4)让学生仿照(1)的解题过程自己做,然后 再由学生互相纠错. 通过这节课你学到了什么? 1.立方根的概念、表示方法 回顾2.立方根的性质(与平方根性质的对比) 引导学生逐 3.立方与开立方运算的关系 步学会总结,最后 4.√-a=-a(a>0) 老师概括提升 5.类比的思想,从特殊到一般的思想 作业 教材中的习题1、2、3、4 巩固练习 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 练习:判断 (1) 8 27 的立方根是 2 3 (2)负数没有立方根 (3)4 的平方根是 2 (4) −8 的立方根是−2 (5)立方根是它本身的数只有零 (6)一个数有立方根,则它一定有平方根 合 作 探 究 合作探究: 3 − = 8 3 − = 8 3 − = 27 3 − = 27 3 − = 512 3 − = 512 观察上面三组算式,总结出互为相反数的两个数 a 与 −a 的 立方根的关系吗? 由学生思考并小组讨论后得出结论: 3 3 − = − a a ( a 0 ) 求一个负数的立方根,可以先求这个负数的绝对值的立方 根,再取它的相反数. 可让学生独立 完成探究题,再小 组交流,并不妨请 同学再举几个例 子,探索从上面的 计算结果中可以 得到什么结论. 在这个过程 中让学生体会从 特殊到一般的思 想. 例 题 解 析 例 2 求下列各式的值 (1) 3 −729 (2) 3 512 (3) 3 −0.027 (4) 3 1 216 − 解 (1) 3 3 3 3 − = − = − = − 729 729 9 9 对于例题(1),可由学生口答,老师给出规范的解题格式,对 于例题(2)、(3)、(4)让学生仿照(1)的解题过程自己做,然后 再由学生互相纠错. 及时巩固所 学知识. 回顾 反 思 通过这节课你学 到了什么? 1. 立方根的概念、表示方法 2. 立方根的性质(与平方根性质的对比) 3. 立方与开立方运算的关系 4. 3 3 − = − a a ( a 0 ) 5. 类比的思想,从特殊到一般的思想 引导学生逐 步学会总结,最后 老师概括提升. 作业 教材中的习题 1、2、3、4. 巩固练习 板书
免费下载网址htt:/ jiaoxue5uys168com/ 设计 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 设计