
第五章相交线与平行线5.1.相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认,2.掌握对顶角相等的性质和它的推证过程3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力重点:在较复杂的图形中准确辨认对顶角和邻补角难点:在较复杂的图形中准确辨认对顶角和邻补角,教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题学生活动:口答哪些道路是交错的,哪些道路是平行的,教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线,相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用:所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备,我们先研究直线相交的问题,引入本节课题二、探究新知,讲授新课A21区1340B1对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书,【板书】Z1与Z3是直线AB、CD相交得到的,它们有一个公共顶点0,没有公共边,像这样的两个角叫做对顶角学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:Z2和/4再也是对顶角紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行,(2)对顶角是成对存在的,它们互为对顶角,如/1是/3的对顶角,同时,/3是/1的对顶角,也常说1和/3是对顶角2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么:【板书】:/1与2互补,23与/2互补(邻补角定义),:1=/3(同角的补角相等)
第五章 相交线与平行线 5 . 1. 1相交线 教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认. 2.掌握对顶角相等的性质和它的推证过程. 3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力. 重点:在较复杂的图形中准确辨认对顶角和邻补角. 难点:在较复杂的图形中准确辨认对顶角和邻补角. 教学过程 一、创设情境,引入课题 先请同学观察本章的章前图,然后引导学生观察,并回答问题. 学生活动:口答哪些道路是交错的,哪些道路是平行的. 教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当 我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行 线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今 后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交 的问题,引入本节课题. 二、探究新知,讲授新课 1.对顶角和邻补角的概念 学生活动:观察上图,同桌讨论,教师统一学生观点并板书. 【板书】∠1 与∠3 是直线 AB、CD 相交得到的,它们有一个公共顶点 O, 没有公共边,像这样的两个角叫做对顶角. 学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角? 学生口答:∠2 和∠4 再也是对顶角. 紧扣对顶角定义强调以下两点: (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角 与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶 角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这 三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行. (2)对顶角是成对存在的,它们互为对顶角,如∠1 是∠3 的对顶角, 同时,∠3 是∠1 的对顶角,也常说∠1 和∠3 是对顶角. 2.对顶角的性质 提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质 呢? 学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么. 【板书】∵∠1 与∠2 互补,∠3 与∠2 互补(邻补角定义), ∴∠l=∠3(同角的补角相等).

注意:Z1与Z2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义,或写成::1=180°—22,23=180°—Z2(邻补角定义),:./1=/3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。解:Z3=Z1=40°(对顶角相等).2=180°一40°=140°(邻补角定义)/4=/2=140°(对顶角相等).三、范例学习b学生活动:让学生把例题中Z1=40°这个条件换成其他条件,而结论不变,自编几道题变式1:把/1=40°变为/2一/1=40°变式2:把/1=40°变为/2是/1的3倍变式3:把Z1=40°变为/1:Z2=2:9四、课堂小结学生活动:表格中的结论均由学生自己口答填出.特征性质角的名称相同点不同点①两条直线相交面成的角对顶对顶角没有公共边角对顶角②有一个公共顶点都是两直线而邻补角有一条公共相等③没有公共边相交而成的角,边;两条直线相交时,都有一个公共①两条直线相交面成的一个有的对顶角有邻补顶点,它们都是角个,而一个角的邻补角角邻补角成对出现。②有一个公共顶点有两个。互补③有一条公共边五、布置作业:课本P3练习教学后记:
注意:∠l 与∠2 互补不是给出的已知条件,而是分析图形得到的;所 以括号内不填已知,而填邻补角定义. 或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义), ∴∠1=∠3(等量代换). 学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立 完成解题过程,请一个学生板演。 解:∠3=∠1=40°(对顶角相等). ∠2=180°-40°=140°(邻补角定义). ∠4=∠2=140°(对顶角相等). 三、范例学习 学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变, 自编几道题. 变式 1:把∠l=40°变为∠2-∠1=40° 变式 2:把∠1=40°变为∠2 是∠l 的 3 倍 变式 3:把∠1=40°变为∠1:∠2=2:9 四、课堂小结 学生活动:表格中的结论均由学生自己口答填出. 五、布置作业:课本 P3 练习 教学后记: 角的名称 特征 性质 相同点 不同点 对顶角 ①两条直线相交面成的角 ②有一个公共顶点 ③没有公共边 对顶 角 相等 都是两直线 相交而成的角, 都有一个公共 顶点,它们都是 成对出现。 对顶角没有公共边 而邻补角有一条公共 边;两条直线相交时, 一个有的对顶角有一 个,而一个角的邻补角 有两个。 邻补角 ①两条直线相交面成的 角 ②有一个公共顶点 ③有一条公共边 邻补 角 互补

5.1.垂线(第一课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线重点两条直线互相垂直的概念、性质和画法教学过程一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中a是直角是特殊情况.其特殊之处还在于:当Za是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等3.师生共同给出垂直定义师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。4.垂直的表示法.垂直用符号“工”来表示,结合课本图5.1一5说明“直线AB垂直于直线CD,垂足为0”,则记为AB工CD,垂足为0,并在图中任意一个角处作上直角记号,如图.5.简单应用1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补二、画图实践探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直
5 . 1. 2垂线(第一课时) 教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空 间观念,用几何语言准确表达能力. 2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线. 重点两条直线互相垂直的概念、性质和画法. 教学过程 一、创设问题情境 1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线., 思考这些给大家什么印象? 在学生回答之后,教师指出:“垂直”两个字对大家并不陌生 ,但是垂直的意义, 垂线有什么性质,我们不一定都了解,这可是我们要学习的内容. 2.学生观察课本 P3图 5.1-4 思考:固定木条 a,转动木条,当 b 的位置变化时,a、 b 所成的角 a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b 所成的四个角有什么特殊关系? 教师在组织学生交流中,应学生明白:当 b 的位置变化时,角 a 从锐角变为钝角, 其中∠a 是直角是特殊情况.其特殊之处还在于:当∠a 是直角时,它的邻补角,对 顶角都是直角,即 a、b 所成的四个角都是直角,都相等. 3.师生共同给出垂直定义. 师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的 位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线 “互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直 线的“垂线”,则它们必定“互相垂直”。 4.垂直的表示法. 垂直用符号“⊥”来表示,结合课本图 5.1-5 说明“直线 AB 垂直于直线 CD, 垂足为 O”,则记为AB⊥CD,垂足为 O,并在图中任意一个角处作上直角记号,如 图. 5.简单应用 (1)学生观察课本 P6 图 5.1-6 中的一些互相垂直的线条,并再举出生活中其他 实例. (2)判断以下两条直线是否垂直: ①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补. 二、画图实践,探究垂线的性质 1.学生用三角尺或量角器画已知直线 L 的垂线. (1)已知直线 L(教师在黑板上画一条直线 L),画出直线 L 的垂线.待学生上黑板 画出 L 的垂线后,教师追问学生:还能画出 L 的垂线吗?能画几条?通过师生交流, 使学生明确直线 L 的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才 能确定直线 L 的垂线位置?在学生道出:在直线 L 上取一点 A,过点 A 画 L 的垂线, 并且动手画出图形. 教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直

(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论?教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点:(3)过点P画线段AB的垂线,交线AB延长线于Q点学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.三、课堂小结本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?四、布置作业:课本P7练习.P9.3.4,5.9.教学后记:
(2)经过直线 L 外一点 B 画直线 L 的垂线,这样的垂线能画出几条?从中你又得 出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直. 教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质 1:过一点有且只有一条直线与已知直线垂直. 2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图: (1)过点 P 画射线 MN 的垂线,Q 为垂足; (2)过点 P 画射线 BN 的垂线,交射线 BN 反向延长线于 Q 点; (3)过点 P 画线段 AB 的垂线,交线 AB 延长线于 Q 点. 学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂 线. 三、课堂小结 本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法, 并得出垂线一条性质,你能说出相关的内容吗? 四、布置作业:课本 P7 练习,P9.3,4,5,9. 教学后记:

5.1.2垂线(第二课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离教学重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用教学难点:对点到直线的距离的概念的理解教学过程一、创设问题情境1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?学生看图、思考2.教师以问题串形式,启发学生思考(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?学生说出:两点间线段最短(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?3.教师演示教具,给学生直观的感受,教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验4.学生画图操作,得出结论(1)画出直线L,L外一点P:(2)过P点出POIL,垂足为O;(3)点A,A2,A...在L上,连接PA、PA、PA...(4)用叠合法或度量法比较PO、PA、PAe、PA..长短5.师生交流,得出垂线的另一条性质,教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成:垂线段最短.关于垂线段教师可让学生思考:(1)垂线段与垂线的区别联系(2)垂线段与线段的区别与联系二、点到直线的距离1.师生根据两点间的距离的意义给出点到直线的距离命名,结合课本图形(图5.1-9),深入认识垂线段P0:P0L,ZP0A=90°,0为垂足,垂线段PO的长度比其他线段PAr、PA....中是最短的.按照两点间的距离给点到直线的距离命名,教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,在图5.1-9中,PO的长度是点P到直线L的距离,其余结论PA、PA...长度都不是点P到L的距离2、练习课本P6练习三、课堂小结:通过这节课,我们主要学习了什么呢?
5.1.2 垂线(第二课时) 教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空 间观念,用几何语言准确表达能力。2.了解垂线段的概念,了解垂线段最短的性 质,体会点到直线的距离的意义,并会度量点到直线的距离. 教学重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用. 教学难点:对点到直线的距离的概念的理解. 教学过程 一、创设问题情境 1.教师展示课本图 5.1-8,提出问题:要把河中的水引到农田 P 处,如何挖渠能 使渠道最短? 学生看图、思考. 2.教师以问题串形式,启发学生思考. (1)问题 1,上学期我们曾经学过什么最短的知识,还记得吗? 学生说出:两点间线段最短. (2)问题 2,如果把渠道看成是线段,它的一个端点自然是 P,那么另一个端点的 位置呢?把江河看成直线 L,那么原问题就是怎么的数学问题. 问题 2 使学生能用数学眼光思考:在连接直线 L 外一点 P 与直线 L 上各点的线 段中,哪一条最短? 3.教师演示教具,给学生直观的感受. 教具如图:在硬纸板上固定木条 L,L 外一点 P,转动的木条 a 一端固定在点 P. 使木条 L 与 a 相交,左右摆动木条 a,L 与 a 的交点 A 随之变化,线段 PA 长度也 随之变化.PA 最短时,a 与 L 的位置关系如何?用三角尺检验. 4.学生画图操作,得出结论. (1)画出直线 L,L 外一点 P; (2)过 P 点出 PO⊥L,垂足为 O; (3)点 A1,A2,A3.在 L 上,连接 PA、PA2、PA3.; (4)用叠合法或度量法比较 PO、PA1、PA2、PA3.长短. 5.师生交流,得出垂线的另一条性质. 教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短. 关于垂线段教师可让学生思考: (1)垂线段与垂线的区别联系. (2)垂线段与线段的区别与联系. 二、点到直线的距离 1.师生根据两点间的距离的意义给出点到直线的距离命名. 结合课本图形(图 5.1-9),深入认识垂线段 PO:PO⊥L,∠POA=90°,O为垂足,垂 线段 PO 的长度比其他线段 PA1、PA2.中是最短的. 按照两点间的距离给点到直线的距离命名,教师板书: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. 在图 5.1-9 中,PO 的长度是点 P 到直线 L 的距离,其余结论 PA、PA2.长度都 不是点 P 到 L 的距离. 2、练习课本 P6 练习 三、课堂小结:通过这节课,我们主要学习了什么呢?

四、布置作业:课本P9.6,P10.10,11,12,P11观察与猜想教学后记:
四、布置作业:课本 P9.6,P10.10,11,12,P11观察与猜想. 教学后记:

5.1.3同位角、内错角、同旁内角教学目标:1、理解同位角、内错角、同旁内角的概念:2、会识别同位角、内错角、同旁内角.重点:同位角、内错角、同旁内角的概念与识别;难点:识别同位角、内错角、同旁内角。教学过程一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。二、同位角、内错角、同旁内角如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。我们来研究那些没有公共顶点的两个角的关系。C/1与Z2、Z4与8、Z5与/6、Z3与7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下):具有这种位置关系的两个角叫做同位角同位角形如字母“F”/3与/2、Z4与6的位置有什么共同的特点?在截线的两旁,被截直线之间。具有这种位置关系的两个角叫做内错角内错角形如字母“Z”23与/6、/4与/2的位置有什么共同的特点?在截线的同旁,被截直线之间。具有这种位置关系的两个角叫做同旁内角同旁内角形如字母“U”。思考:这三类角有什么相同的地方?(1)都不相邻即不存在共公顶点;(2)有一边在同一条直线(截线)上。三、例题例如图,直线DE,BC被直线AB所截,(1)Z1与/2、Z1与Z3、Z1与/4各是什么角?为什么?(2)如果/1=4,那么/1与/2相等吗?/1与Z3互补吗?为什么?%D2/3E/1BC
5.1.3 同位角、内错角、同旁内角 教学目标:1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、 内错角、同旁内角. 重点:同位角、内错角、同旁内角的概念与识别; 难点:识别同位角、内错角、同旁内角。 教学过程 一、导入新课 前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研 究一条直线分别与两条直线相交的情形。 二、同位角、内错角、同旁内角 如图,直线 a、b 与直线 c 相交,或者说,两条直线 a、b 被第三条直线 c 所截,得到八个角。 我们来研究那些没有公共顶点的两个角的关系。 ∠1 与∠2、∠4 与∠8、∠5 与∠6、∠3 与∠7 有什么位置关系? 在截线的同旁,被截直线的同方向(同上或同下). 具有这种位置关系的两个角叫做同位角。 同位角形如字母“F”。 ∠3 与∠2、∠4 与∠6 的位置有什么共同的特点? 在截线的两旁,被截直线之间。 具有这种位置关系的两个角叫做内错角. 内错角形如字母“Z”。 ∠3 与∠6、∠4 与∠2 的位置有什么共同的特点? 在截线的同旁,被截直线之间。 具有这种位置关系的两个角叫做同旁内角. 同旁内角形如字母“U”。 思考:这三类角有什么相同的地方? (1)都不相邻即不存在共公顶点;(2)有一边在同一条直线(截线)上。 三、例题 例如图,直线 DE,BC 被直线 AB 所截,(1)∠1 与∠2、∠1 与∠3、∠1 与 ∠4 各是什么角?为什么?(2)如果∠1=∠4,那么∠1 与∠2 相等吗?∠1 与∠ 3 互补吗?为什么? 3 1 B D 4 A C 2 E c b a 4 3 2 5 1 6 7 8

解:(1)Z1与Z2是内错角,因为1与Z2在直线DE,BC之间,在截线AB的两旁;Z1与Z3是同旁内角,因为Z1与Z3在直线DE,BC之间,在截线AB的同旁;Z1与Z4是同位角,因为Z1与Z4在直线DE,BC的同方向,在截线AB的同方向。(2)如果/1=/4,又因为/2=/4,所以/1=/2;因为3+Z4=180,又Z1=/4,所以1+/3=180,即Z1与Z3互补。四、课堂小结:通过这节课,我们主要学习了什么呢?五、布置作业课本P7练习1、2题教学后记:
解:(1)∠1 与∠2 是内错角,因为∠1 与∠2 在直线 DE,BC 之间,在截线 AB 的两旁;∠1 与∠3 是同旁内角,因为∠1 与∠3 在直线 DE,BC 之间,在截线 AB 的同旁;∠1 与∠4 是同位角,因为∠1 与∠4 在直线 DE,BC 的同方向,在截 线 AB 的同方向。(2)如果∠1=∠4,又因为∠2=∠4,所以∠1=∠2;因为∠3+ ∠4=180 0,又∠1=∠4,所以∠1+∠3=180 0,即∠1 与∠3 互补。 四、课堂小结:通过这节课,我们主要学习了什么呢? 五、布置作业:课本 P7 练习 1、2 题 教学后记:

5.2.平行线教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线重点:探索和掌握平行公理及其推论,难点:对平行线本质属性的理解,用几何语言描述图形的性质教学过程一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?3.教师组织学生交流并形成共识转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a的交点就会从A点的左边又转动A点的左边.可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.CIB二、平行线定义表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线直线a与b是平行线,记作“I/”,这里“//”是平行符号教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交
5 . 2 . 1平行线 教学目标 1.经历观察教具模式的演示和通过画图等操作 ,交流归纳与活动,进 一步发展空间观念. 2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系 ,知道平 行公理以及平行公理的推论. 3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这 条直线的平行线. 重点:探索和掌握平行公理及其推论. 难点:对平行线本质属性的理解,用几何语言描述图形的性质. 教学过程 一、创设问题情境 1.复习提问:两条直线相交有几个交点 ?相交的两条直线有什么特殊的位置关 系? 学生回答后,教师把教具中木条 b与 c重合在一起,转动木条a 确认学生的回答. 教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗? 2.教师演示教具. 顺时针转动木条 b 两圈,让学生思考:把 a、b 想像成两端可以无限延伸的两条 直线,顺时针转动 b 时,直线 b 与直线 a 的交点位置将发生什么变化?在这个过程 中,有没有直线 b 与 c 木相交的位置? 3.教师组织学生交流并形成共识. 转动 b 时,直线 b 与 c 的交点从在直线 a 上 A 点向左边距离 A 点很远的点逐步 接近 A 点,并垂合于 A 点,然后交点变为在 A 点的右边,逐步远离 A 点.继续转动下 去,b 与 a 的交点就会从 A 点的左边又转动 A 点的左边.可以想象一定存在一 个直线 b 的位置,它与直线 a 左右两旁都没有交点. 二、平行线定义表示法 1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线 a 与直线 b 不相交的位置,这时直线 a 与 b 互相平行.换言之,同一平面内,不相交 的两条直线叫做平行线. 直线 a 与 b 是平行线,记作“∥”,这里“∥”是平行符号. 教师应强调平行线定义的本质属性 ,第一是同一平面内两条直线 ,第二是设有 交点的两条直线. 2.同一平面内,两条直线的位置关系 教师引导学生从同一平面内 ,两条直线的交点情况去确定两条直线的位置关 系. 在同一平面内 ,两条直线只有两种位置关系 :相交或平行,两者必居其一 .即两 条直线不相交就是平行,或者不平行就是相交. c b a c b a B A

三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b的过程中,有几个位置能使b与a平行?本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行2.用直线和三角尺画平行线,已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?.c(2)过点C画直线a的平行线,它与过点B的平行线平行吗?B.3.通过观察画图、归纳平行公理及推论a(1)由学生对照垂线的第一性质说出画图所得的结论(2)在学生充分交流后,教师板书平行公理:经过直线外一点,有且只有一条直线与这条直线平行。(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的,不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外4.归纳平行公理推论,(1)学生直观判定过B点、C点的a的平行线b、C是互相平行C(2)从直线b、c产生的过程说明直线b//直线c.-b(3)学生用三角尺与直尺用平推方验证b//c(4)师生用数学语言表达这个结论,教师板书结果两条直线都与第三条直线平行,那么这条直线也互相平行.a结合图形,教师引导学生用符号语言表达平行公理推论:如果b//a,c//a,那么b//c.(5)简单应用练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范四、作业:课本P19.7,P20.11.教学后记:
a C B 三、画图、观察、归纳概括平行公理及平行公理推论 1.在转动教具木条 b 的过程中,有几个位置能使 b 与 a 平行? 本问题是学生直觉直线 b 绕直线 a 外一点 B 转动时,有并且只有一个位置使 a 与 b 平行. 2.用直线和三角尺画平行线. 已知:直线 a,点 B,点 C. (1)过点 B 画直线 a 的平行线,能画几条? (2)过点 C 画直线 a 的平行线,它与过点 B 的平行线平行吗? 3.通过观察画图、归纳平行公理及推论. (1)由学生对照垂线的第一性质说出画图所得的结论. (2)在学生充分交流后,教师板书. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行. (3)比较平行公理和垂线的第一条性质. 共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存 在并且是唯一的. 不同点:平行公理中所过的“一点”要在已知直线外 ,两垂线性质中对“一点” 没有限制,可在直线上,也可在直线外. 4.归纳平行公理推论. (1)学生直观判定过 B 点、C 点的 a 的平行线 b、c 是互相平行. (2)从直线 b、c 产生的过程说明直线 b∥直线 c. (3)学生用三角尺与直尺用平推方验证 b∥c. (4)师生用数学语言表达这个结论,教师板书. 结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: 如果 b∥a,c∥a,那么 b∥c. (5)简单应用. 练习:如果多于两条直线,比如三条直线 a、b、c 与直线 L 都平行,那么这三条 直线互相平行吗?请说明理由. 本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范. 四、作业:课本 P19.7,P20.11. 教学后记: c b a