概率统计——习题六解答 1.由于P{X=0,y=0}= ,PX=0,y=1=C3CC23 P{X=0,Y=2/=G -=l ,等,故(X,Y)的分布律为 2 3 1/273273/27 1/27 3/276/27 3/27 273/27 2.设(X,Y)的所有取值为(i,j,其中i,产0,1,2,3,4,5, 且i+j≤5 P{X=,Y=}=C5C(10)( 5--j 计算得Px=}=c(3)(,),1=0.2345,即x~B6,3 P{Y=八}=C( 1010),=012345,即y~B(s.5 3.(1)PX=n}=∑ (7.14)"(686)″ e-,n=0,1,2 !(n-m) P{Y=m}=∑ 714)"(686)″m7 n!(n-m) e-714m=0,1,2, (2)当m固定时, PiX=nr=m (714)(686)m/714m14686m-66 n=mm+l m!(n-m)! mk (n 当n固定时, Pr=m X=n c-“(714)″686m/14 !=Cm214 )"(214 m=0,1,2,…,n m!(n-m)! 4.(1)P{X=n,Y=m}= Cm pmt-q"m,n=1,2,…;m=0,2,…n m=0 pq (2)P{=m} p q (3)P{X=nY=0}=(1-p)p)1,n=12, P{X=m=m}=Cm(1-pq)m(pq)”m,m=12,…;n=m,m+1
概率统计——习题六解答 1.由于 P{X=0,Y=0}= 27 1 3 3 3 3 0 3 0 3 = C C C ,P{X=0,Y=1}= 27 3 3 3 2 2 1 3 0 3 = C C C , P{X=0,Y=2}= 27 3 3 3 1 1 2 3 0 3 = C C C , ,等,故(X,Y)的分布律为 2.设(X,Y)的所有取值为(i,j),其中 i,j=0,1,2,3,4,5, 且 i + j 5。 ) , 10 2 ) ( 10 5 ) ( 10 3 { , } ( 5 5 5 j i j i j i i P X i Y j C C − − = = = − 计算得 ) , 0,1,2,3,4,5 10 7 ) ( 10 3 { } ( 5 = = 5 = − P X i C i i i i ,即 ) 10 3 X ~ B(5, ) , 0,1,2,3,4,5 10 5 ) ( 10 5 { } ( 5 = = 5 = − P Y j C j j j j ,即 ) 10 5 Y ~ B(5, 3.(1) = − − − = = − = = n m m n m n e n n n m n e P X n 0 14 14 , 0,1, 2, ! 14 !( )! (7.14) (6.86) { } ; = − − − = = − = = n m m n m m e m n n m m e P Y m , 0,1, 2, ! 7.14 !( )! (7.14) (6.86) { } 7.14 14 (2)当 m 固定时, , , 1, ( )! 6.86 ! 7.14 !( )! (7.14) (6.86) { | } 7.14 6.86 14 = + − = − = = = − − − − − e n m m n m e m n m m e P X n Y m m n m m n m ; 当 n 固定时, ) , 0,1, 2, , . 1 4 7.1 4 ) (1 1 4 7.1 4 ( ! 1 4 !( )! (7.1 4) (6.8 6) { | } 14 14 e C m n m n m n e P Y m X n m m n m n m n m n = − = − = = = − − − − 4.(1) P X n Y m C p q n m n m m n n m { = , = } = n + −1 − +1 , =1,2, ; = 0,1,2, (2) = − = − = = + − , 1,2, (1 ) , 0 1 { } 1 2 1 2 m pq p q m pq q P Y m m m (3) P{X = nY = 0} = (1− pq)( pq) n−1 , n =1,2, P{X = nY = m} = Cn m (1− pq) m+1 ( pq) n−m , m =1,2, ; n = m,m +1,
5.(1)P{X=1,y=}= -I-J ,ij=1,2,…,n,i+j≤n i j! (n-i-J! N ClCiCH-l- (2)P(X=1,Y=}= ,(n≤N),i≤min(a,n),j≤min(b,n),i+j≤n 课余练习(六)解答 1、(略) 2、由题意可知:乙的投篮次数要么等于甲的投篮次数,要么比甲的投篮次数少一次 所以有PX=k,Y=k}=0.6k×0.4-1×0.6=0.6+1×0.4-1,k=1,2, P{X=k,Y=k1}=064-1×044-1×04=06-1×04,k=1,2,…
5 *.(1) i j n i j n N c N b N a i j n i j n P X i Y j i j n i j = + − − = = = − − ( ) ( ) ( ) , , 1,2, , ; ! !( )! ! { , } (2) n N i a n j b n i j n C C C C P X i Y j n N n i j c j b i a = = = + − − { , } , ( ), min( , ), min( , ), 课余练习(六)解答 1、(略) 2、由题意可知:乙的投篮次数要么等于甲的投篮次数,要么比甲的投篮次数少一次, 所以有 P{X=k,Y=k}= 1 1 1 0.6 0.4 0.6 0.6 0.4 − + − = k k k k ,k=1,2, P{X=k,Y=k-1}= k k k k 0.6 0.4 0.4 0.6 0.4 1 1 1 = − − − ,k=1,2,