概率统计——习题十四解答 1.(1)pxy=1;(2)D(X+Y)=076 (3)X与Y相互独立台F(x,y)=Fx(x)F(y) Y与Y不相关p 事件A与B互不相容分A∩B= 事件4与B互为对立事件A∪B=Ω且AB=C或B=A 事件A与B相互独立分P(AB)=P(A)P(B EC xf(x, y)dxdy (x+ y)a E(Y)=y(x, y)drdy= dry(x+ydy=3 ECXY)=[xf(x, y)dxdy=ydy xo(+y)dr=4 coV(X,Y) 4 E(x2)=「∫xf(xy)d=j∴/x(+ms5=E(Y2 5-( 3-06-36 (Y),∴p 36/3611 D(x+Y)=D)+D()+2coX,Y)=2()+2(-3)=5 3.(1)E(Z)=E(+1)=E()+E()= E(X E() 3 X X Y D(Z)=D(+)=D()+D()+2c0v一, D(X D(r) 11 +2××cov(X,Y) 32 +4+Px√D(X)D(Y)=5-x×3×4=3 XY、1 (2)cOM(X, 2)=c 3)==coMx, X)+co X, 2) D(X) 3+2PYVD()D(r)=0 Pxz=0 (3)因Z不一定服从正态分布,(X,Z)更不一定服从正态分布,故尽管X与 Z不相关,X与Z仍不一定相互独立。 4.由题设可知(如图所示) P1XsY)=4,Px>Y)=2,PX2}=4
概率统计——习题十四解答 1.(1) XY =1 ; (2) D(X +Y) = 0.76 ; (3) X Y F(x, y) F (x)F ( y) 与 相互独立 = X Y X与Y不相关 XY = 0 事件A与B互不相容 AB = 事件A与B互为对立事件 AB = 且AB = 或 B = A 事件A与B相互独立 P(AB) = P(A)P(B) 2. = = + = − − 2 0 2 0 ; 6 7 ( ) 8 1 1 E(X ) x f (x, y)dxdy dy x x y dx = = + = − − 2 0 2 0 ; 6 7 ( ) 8 1 1 E(Y ) yf (x, y)dxdy dx y x y dy = = + = − − 2 0 2 0 ; 3 4 ( ) 8 1 1 E(XY ) xyf (x, y)dxdy ydy x x y dx ; 36 1 ) 6 7 )( 6 7 ( 3 4 cov( X ,Y ) = − = − = = + = = − − 2 0 2 0 2 2 2 ( ), 3 5 ( ) 8 1 1 E(X ) x f (x, y)dxdy dy x x y dx E Y ( ), 36 11 ) 6 7 ( 3 5 ( ) 2 D X = − = = D Y ; 11 1 36 11 36 1 XY = − = − . 9 5 ) 36 1 ) 2( 36 11 D(X + Y ) = D(X ) + D(Y ) + 2 cov( X ,Y ) = 2( + − = 3.(1) 3 1 2 ( ) 3 ( ) ) 2 ) ( 3 ) ( 3 2 ( ) = ( + = + = + = Y E X E Y E X E X Y E Z E ) 2 , 3 ) 2cov( 2 ) ( 3 ) ( 3 2 ( ) ( Y X Y D X D X Y D Z = D + = + + cov( , ) 2 1 3 1 2 2 ( ) 3 ( ) 2 2 X Y D X D Y = + + ( ) ( ) 3 1 =1+ 4 + XY D X D Y 3 4 3 2 1 3 1 = 5 − = (2) cov( , ) 2 1 cov( , ) 3 1 ) 3 2 cov( , ) cov( , X X X Z X Y X Z = X + = + ( ) ( ) 0 2 1 3 ( ) = + D X D Y = D X XY XZ = 0 (3)因 Z 不一定服从正态分布,(X,Z)更不一定服从正态分布,故尽管 X 与 Z 不相关,X 与 Z 仍不一定相互独立。 4.由题设可知(如图所示): 4 1 P{X Y} = , 2 1 P{X Y} = , 4 1 P{Y X 2Y} =
(1)(U,n)所有可能取值为:(0,0),(0,1),(1,0),(1,1)。且 P{U=0,=0}=P{X≤Y,X≤2Y}=P{X≤Y}= P{U=0,V=l}=P{X≤},X>2}=0 P{U=1,V=0}=P{X>Y,X≤2}=P{Y<X≤2}= P{U=1,V=1} (2)由(1)的结构易知U、U和V的分布律分别为 01 U~131:~1 于是有E(U) D(U) E() DC E(UV) 16 coMU, v) COMU, D=E(UV)-E(UE() DU)D()√3 设x={1.第次擦出点x=(1.第次擦H6点 0,其它 其它, 1,2, 则x1…,X独立 也独立,当i≠时,X,独立,且 X=∑X,Y=∑Y,E(,)=P{X,=l}==E() c0x,)=-a(x)E0)=1301= X,)=cov∑X,∑)=∑c0wx,F)+∑o(X n 另解:设Z=X+Y,则Z-B(n,p),其中p=P{抛掷一颗骰子出1点或6点}=1/3 2n=n(1/31-1/3)=D(Z)=D(X+Y)=D(X)+D(Y)+2covX,Y) (X)=D(Y)=n(1/6(1-1 coV(X,r)= 36--36 课余练习(十四)解答
(1) (U,V) 所有可能取值为:(0,0),(0,1),(1,0),(1,1)。且 4 1 P{U = 0,V = 0} = P{X Y, X 2Y} = P{X Y} = P{U = 0,V =1}= P{X Y, X 2Y}= 0 4 1 P{U =1,V = 0} = P{X Y, X 2Y} = P{Y X 2Y} = 2 1 ) 4 1 4 1 P{U =1,V =1} =1− ( + = (2)由(1)的结构易知 UV、U 和 V 的分布律分别为: 2 1 2 1 0 1 UV ~ ; 4 3 4 1 0 1 U ~ ; 2 1 2 1 0 1 V ~ 于是有 4 3 E(U ) = , 16 3 D(U ) = , 2 1 E(V ) = , 4 1 D(V ) = , 2 1 E(UV ) = , 8 1 cov(U,V ) = E(UV ) − E(U)E(V ) = , 3 1 ( ) ( ) cov( , ) = = D U D V U V 5 *.设 = 0, , 1, 1 , 其它 第i次掷出 点 Xi = 0, , 1, 6 , 其它 第i次掷出 点 Yi i =1, 2, ,n 则 X X n , , 1 独立, Y Yn , , 1 也独立,当 i j 时, Xi Yj , 独立,且 ( ). 6 1 , , ( ) { 1} 1 1 i i i n i i n i X = Xi Y = Y E X = P X = = = E Y = = − = − = = 0, . ( ) ( ) 1/ 36, , cov( , ) i j E X E Y i j X Y i i i j = = = = = + = − i j i j n i n i i i n i i i n X Y X Y X Y X Y . 36 cov( , ) cov( , ) cov( , ) cov( , ) 1 1 1 另解:设 Z=X+Y,则 Z~B(n, p),其中 p=P{抛掷一颗骰子出 1 点或 6 点}=1/3. (1/ 3)(1 1/ 3) ( ) ( ) ( ) ( ) 2cov( , ) 9 2 n D Z D X Y D X D Y X Y n = − = = + = + + , 36 5 ( ) ( ) (1/ 6)(1 1/ 6) n D X = D Y = n − = . 36 ) 36 5 2 9 2 ( 2 1 cov( , ) n n n X Y = − = − 课余练习(十四)解答
1. D(r)=D(a+bX=b D(), cov(X, r)=cov(X, a+bX)=bcov(X, X)=bD(X) coX, y) b D(Y)D(Y)b 2.由题意有:E(X)=P(A),E(Y)=P(B),E(X)=P(A)P(B), X covX,Y)=0→ coV(,)=0→E(XY)=E(X)E(Y D(X)D(r →P(AB)=P(AP(B)→A与B相互独立→与Y相互独立 3. cOMU, V)=coM(2X +3Y+Z,X-Y+5Z)=2cov(Y, X)-2cov(X, Y)+10cov(X, Z +3cov(r, X)-3cov, n)+15cov(, Z)+cov(Z, X)-cov(Z, Y)+5cov(Z, Z)=-26 250-2648 同理有所求协方差矩阵为:-26305-76 7626 b 4. TE E(X)=xf(x)dx bf(x)dr=b f(x)dx=b E(X)=xf(x)dx2laf(x)dx=a f(x)dx=a a≤E(X)≤b D(X)≤E(x-+b)=E-g+P,x-22图a(或b)-g+b上1b-al D(X)≤E( (b-a) 举例:设X b 212),则 E(X) b E(X-)= D(X)= a+b)2=1[2(a2+b2)-(a2+b2+2ab (b-a)
1. ( ) ( ) ( ) 2 D Y = D a +bX = b D X ,cov(X,Y) = cov(X,a +bX) = bcov(X, X) = bD(X) b b D X D Y X Y XY = = ( ) ( ) cov( , ) 2.由题意有: E(X) = P(A),E(Y) = P(B),E(XY) = P(A)P(B), = = 0 ( ) ( ) cov( , ) D X D Y X Y XY cov(X,Y) = 0 E(XY) = E(X)E(Y) P(AB) = P(A)P(B) A与B相互独立 X与Y相互独立 3.cov(U,V) = cov(2X + 3Y + Z, X −Y + 5Z) = 2cov(X, X) −2cov(X,Y) +10cov(X,Z) +3cov(Y, X) −3cov(Y,Y) +15cov(Y,Z) +cov(Z, X) −cov(Z,Y) +5cov(Z,Z) = −26 同理有所求协方差矩阵为: − − − − 48 76 26 26 305 76 250 26 48 4.证 E X xf x dx bf x dx b f x dx b b a b a b a = = = ( ) ( ) ( ) ( ) E X xf x dx af x dx a f x dx a b a b a b a = = = ( ) ( ) ( ) ( ) a E(X) b | , 2 ) | 2 ( ) ( 2 a b 2 E X a b D X E X + = − + − , 2 | | | 2 | | ( ) 2 | a b b a a b a b X − = + − + − 或 ( ) . 4 1 ) 2 | | ( ) ( 2 2 b a b a D X E = − − 举例:设 1/ 2 1/ 2 ~ a b X ,则 , 2 , ( ) 2 ( ) 2 2 2 a b E X a b E X + = + = 故 . 4 ( ) [2( ) ( 2 )] 4 1 ) 2 ( 2 ( ) 2 2 2 2 2 2 2 2 b a a b a b ab a b a b D X − = + − + + = + − + =