概率统计—一习题十八解答 1.填空题(1)2X,;(2)1/X. 2. L(P)=ICmP(1-p)=glCm )p=(1-p)s-1) hnL=h(∏Cm)+∑x,hp+∑(m-x,)h(1-p), 由 dIn L (m-x1)=0,得p=x/m P 故,估计量:p=1X,估计值:P=mx 3.∵E( 4.(1)因为总体X~P{X=x=e,x=0,1,2,…,0>0 E(X)=∑ 0,故θM=X (2)因为 x hL=-h∏x)+∑ d(n L) 0,得θ=x 故0=X (3)因为p=P{X=0}=e°,因此,p= 5.(1)∵E(X ∫(+m)e2b=0+=x E(X)=e° ∫(+)ed=202+2p+12=02+(0+)2=∑x,故联立上述
概率统计-----习题十八解答 1.填空题(1) 2X , ;(2) 1/ X. 2. = − = − − = − = = = n i x m x x m n i x x m x m n i i i n i i i i i i L p C p p C p p 1 ( ) 1 1 1 ( ) (1 ) ( ) (1 ) , = = = = + + − − n i i n i i n i x L Cm x p m x p i 1 1 1 ln ln( ) ln ( )ln(1 ) , 由 = = − = − = − n i i n i i m x p p x dp d L 1 1 ( ) 0 1 ln 1 ,得 p = x / m 故,估计量: X m p 1 = ,估计值: x m p 1 = . 3. − − + − = = = C C E X x C x dx C x dx C, 1 ( ) ( 1) . ˆ X C X − = 4.(1)因为总体 , 0,1, 2, , 0, ! ~ { } = = = e − x x X P X x x , ! ( ) 0 = = = − x x e x E X x 故 . ˆ M = X (2) 因为 , ! 1 ! ( ) 1 1 1 − = = − = = = n n x i n i i i x e x e x L n i i i ln ln( ) ln , 1 1 = − + − = = L x x n n i i n i i 由 0 (ln ) 1 1 − = = = x n d d L n i i ,得 = x. 故 . ˆ L = X (3) 因为 { 0} , − p = P X = = e 因此, . X p e e − − = = 5.(1) − − − = − = = + = + = 0 ( ) e dx ( y )e dy X, x E X y x y x 令 = − − − = − = = + = + + = + + = 0 1 2 2 2 2 2 2 2 2 , 1 ( ) ( ) 2 2 ( ) n i i y x y x X n e dx y e dy x E X 令 故联立上述
两方程并解之,得 A2 IM A =A1-√B2 (x, (2)∵L(6,μ)= x;≥μ,i=1,2,…,n hL=-nh-∑(x1- 由 aIn L )=0, 得b 另外,由于μ≤x1≤x,μ越大,hL从而L(O,山)越大,故 估计量:以2=x0m,0=1x2-xm)
两方程并解之,得 2 2 2 1 1 2 1 2 X X A A B n n i M = i − = − = = , . 1 1 2 2 1 2 1 1 2 2 X X A A A A B n X n i M = − i − = − − = − = (2) L e e xi i n x n n i x n i i i , , 1, 2, , 1 ( , ) 1 ( ) 1 1 = = = = − − − = − − ( ), 1 ln ln 1 = = − − − n i i L n x 由 = = − + − = n i i x L n 1 2 ( ) 0 ln 1 ,得 = = − n i i x n 1 ( ) 1 ; 另外,由于 i x x (1) , 越大, ln L 从而 L(, ) 越大,故 估计量: = = = − n i L L Xi X n X 1 (1) ( (1) ) 1 , .