概率统计——习题十三解答 1.设t(单位:公斤)表示进货数,t∈(1,2),进货t所获利润记为Y,则有 aX-(t-X)b,t1<X≤t t<x<t2 又X的密度函数为f(x)={-441<x<h2 其它 所以E()=「[ax-(-x)b t2-t1 a+b a+b (bt,+at2 )t t2 -tu 令“B()=(+b+M+m=0,得驻点t=m+h。 dt t2-t1 +b 所以该店应该进2公斤商品,才可使利润的数学期望最大。 a+b 第识只球与盒配对, 2.设x=0 否则 12…,n则x=∑X E(x)=P{x1=1}=1.:E(X)=∑E(x)=1 3.E(X)=∑(1-p)=p(1-p∑(1-p)=p(-p) P (1-P) E(X2)=E[X(X-1)+H]=E[X(X-1)+E(X) ∑k(k-1)p(1-py+2=p(1-p)3∑k(k-11-py p(1-p) 1-p [2(1-p)+p]= (1-P)(2-p) P P DX=E(X2)-E(X)2=(=p2-p)(-p)=1=p P p2 4.E(X)=Jx(x)k=x+叫k=(x-p)e+叫 μ=μ +∞ D(X)=[x-E(X)I f(x)dx=I(x-W) 2e dy=2 5.用切比雪夫不等式即得
概率统计——习题十三解答 1.设 t(单位:公斤)表示进货数, ( , ) 1 2 t t t ,进货 t 所获利润记为 Y,则有: − − = 2 1 , ( ) , at t X t aX t X b t X t Y 又 X 的密度函数为 = − 0 , 其它 , 1 ( ) 1 2 2 1 t x t f x t t 所以 − + − = − − 2 1 2 1 2 1 1 1 ( ) [ ( ) ] t t t t dx t t dx at t t E Y ax t x b 2 1 2 1 2 1 2 ] 2 ( ) 2 [ t t t a b t bt at t a b − + + + − + − = 令 = dt dE(Y) 0 [ ( ) ] 2 1 1 2 = − − + + + = t t a b t bt at ,得驻点 a b at bt t + + = 2 1 。 所以该店应该进 a b at bt + 2 + 1 公斤商品,才可使利润的数学期望最大。 2.设 = , , 0, 1, 否则 第i只球与盒配对 Xi i =1, 2, ,n 则 . 1 = = n i X X i = = = = = = n i i i E X E Xi n E X P X 1 , ( ) ( ) 1. 1 ( ) { 1} 3. = = − − = − − = − = − − = − 0 1 2 1 , 1 [1 (1 )] 1 ( ) (1 ) (1 ) (1 ) (1 ) k k k k p p p E X k p p p p k p p p ( ) [ ( 1) ] [ ( 1)] ( ) 2 E X = E X X − + X = E X X − + E X = = − − = − − − + − = − − + 0 2 2 2 1 (1 ) ( 1)(1 ) 1 ( 1) (1 ) k k k k p p p p k k p p p k k p p , (1 )(2 ) [2(1 ) ] 1 1 [1 (1 )] 2 (1 ) 3 2 2 2 p p p p p p p p p p p p − − − + = − = − + − − = − . (1 )(2 ) 1 1 ( ) ( ) [ ( )] 2 2 2 2 2 p p p p p p p D X E X E X − = − − − − = − = 4. = = = − + + − − − + − − − + − E X xf x dx x e dx x e dx x x 2 1 ( ) 2 1 ( ) ( ) = + = + − − t e dt t 2 1 + − − + − − − + − D X = x − E X f x dx = x − e dx = y e dy 2 2 x 2 y 2 1 2 1 ( ) [ ( )] ( ) ( ) 2 0 2 = = + − y e dy y 5.用切比雪夫不等式即得
L=PllXk2 =PlX-E(X)k2)21-D(X) 故D(x)≥4(-1)=2 6.右边=DXD()+[E(XD()+D(XE(2 E(X2)-E2(XE(2)-E2(Y +E2(XE(Y2)-E2()+E2(Y)E(X2)-E2(X =E(X2)E(2)-E2(X)E2()=E(X2y2)-E2(X)=D(XY=左边 课余练习(十三)解答 E(1)=∑X==h E(X2)=∑kP=k=h2- k=1 a a D(X)=E(X2)-E2(X)=a(1+a) 2. E(X)=xf(x)dx=e dr=-xe010 +e dx=0, 2_x E(x2)=∫x2f(x)=∫ae=-x2e06+2Jxe=20 )= 3.(1)以X记试开次数,可取值1,2,…,n。X=i表示前i-1次没打开,第i 次才打开,于是 +1 PiX=il 1n+1 E(X)=∑i ,E(X2)= 1(n+1)(2n+1 DO (2)以X记试开次数,可取值1,2,。X=k表示前k-1次没打开,第k次才
, 2 ( ) {| | 2} {| ( ) | 2} 1 2 1 2 D X = P X = P X − E X − 故 ) 2. 2 1 D(X ) 4(1 − = 6.右边= 2 2 D(X)D(Y) +[E(X)] D(Y) + D(X)[E(Y)] [ ( ) ( )][ ( ) ( )] 2 2 2 2 = E X − E X E Y − E Y + ( )[ ( ) ( )] 2 2 2 E X E Y − E Y + ( )[ ( ) ( )] 2 2 2 E Y E X − E X ( ) ( ) ( ) ( ) 2 2 2 2 = E X E Y − E X E Y ( ) ( ) ( ) 2 2 2 = E X Y − E XY = D XY =左边 课余练习(十三)解答 1. = = = 0 ( ) { } k E X kP X k a a a k k k k = + = =1 (1 ) ; = = = 0 2 2 ( ) { } k E X k P X k a a a k k k k = + = =1 2 (1 ) ( ) ( ) ( ) (1 ) 2 2 D X = E X − E X = a + a 2. − − − − = − + = = = 0 0 0 ( ) ( ) e dx xe | e dx , x E X xf x dx x x x − − − − = − + = = = 0 2 0 0 2 2 2 2 ( ) ( ) e dx x e | 2 xe dx 2 x E X x f x dx x x x ( ) . 2 D X = 3.(1)以 X 记试开次数,可取值 1,2,,n。X=i 表示前 i -1 次没打开,第 i 次才打开,于是: n i n i n n i n n n n P X i 1 1 1 2 ( 1) 1 1 2 { } = − + − + − + − − − = = 2 1 1 ( ) 1 + = = = n n E X i n i , 6 1 ( 1)(2 1) ( ) 1 2 2 + + = = = n n n E X i n i 12 1 ( ) 2 − = n D X (2)以 X 记试开次数,可取值 1,2,。X=k 表示前 k -1 次没打开,第 k 次才
打开,于是: P{X=k}=( E(X)= 同理E(x2)=2n2-n,所以D(X)=n2(1-
打开,于是: n n n n n P X k k k 1 ) 1 (1 1 ) 1 { } ( 1 1 = − − = = − − n n k n n n k E X k k k k = − = − = = − = − 1 1 1 1 ) 1 (1 1 ) 1 ( ) (1 同理 E X = n − n 2 2 ( ) 2 ,所以 ) 1 ( ) (1 2 n D X = n −