第三章无穷级数习题课 小结。见书 展开: 1e在=0泰勒展开,预期结果;∑a2,zk1(二=1为奇 方法一:若利用已知级数 则e:当|zk1 1+z+z2+.+ ∑ k! m=o m!
2 0 0 1 1- 1 1- 1 1- 1 ,| | 1( 1 ) | | . 0 1 k k k k k z k z z z z z z e z a z z z e z e e e ¥ = ¥ = å + + +¼¼+ å < = = = < = 见书 预 结 开 为 则 当 结 数 开 级 , 期 果: 奇 一、小 。 二、展 : 1 在 泰勒 方法一: 展 若利用已知 = × × × × × = × × ×¼ ¼ × × × å å ¥ = ¥ = 0 2 0 ! ! 2 m m k k z z z m z k z e e e e e k 第三章无穷级数习题课
方法二:直接用公式 f()=e,f(0)=e f'(=)=e f'(0) 1-z)2f'(z)=f(z) (1-=)2f"(x)-2(1-)f(2)=f(2) f"(=)=(a)(3+23),r"0)=3c f(z)=e1+z+ 间:若1=1=1能否这样展开?
1 1 - 1 1 - 2 2 2 2 ( ) , ( 0 ) 1 ( ) , ( 0 ) (1 - ) (1 - ) ( ) ( ) (1 - ) ( ) - 2 (1 - ) ( ) ( ) ( ) ( 3 2 ) ( ) , ( 0 ) 3 2 (1 - ) . .. .. . 3 ( ) 1 ... 2 ! | | 1 z z f z e f e f z e f e z z f z f z z f z z f z f z f z z f z f e z f z e z z z 方法二:直 接 用公式: : 若 能 否 展 ? = = ¢ ¢ = × \ = \ = ¢ ¢ ¢¢ ¢ ¢ = ¢ + ¢¢ = = ¢¢ \ é ù = + + + ë û 问 = 这 样 开
2.cosz,在z=1,泰勒展开 结果∑a(-12-1k COS z=COS(2-1+1)=cos(z-1)cosl-sin(z-1)sin1 2k+1 = COS 2n/(-1yks1(-y k20(2k+1) |1+(y CS1+(-1)2 121+(-y sin1(z-1)
0 ( -1) ,| -1| cos cos( -1 1) cos( -1)cos1-sin 2.cos , 1 ( -1)sin1 , k k k a z z z z z z z z ¥ = å < ¥ = + = = 结 开 果 在 泰勒展 : 2 2 1 0 0 1 1 2 2 0 ( 1) ( 1) cos1 ( 1) sin1 ( 1) 2 ! (2 1)! 1 ( 1) 1 ( 1) ( 1) cos1 ( 1) sin1 ( 1) 2 2 ! k k k k k k n n n n n z z k k z n ¥ ¥ + = = + ¥ = - - = å å - - - + é ù + - + - - = å + - - ê ú ë û
z=1泰勒展开 解:结果:∑a1(-1,z-1k2 首先应分项分式 (+11=21.2 (z+1)2(z+1 + z+12-1+22 ∑(-1)(三 又 (z+1) 2+ 2 dz ∑(-1) 2∑(1)k(2 k=0 n+l n
0 2 2 2 2 2 0 2 2 2 ( -1) ,| -1| 2 ( 1-1) 2 1 1- ( 1 3. 1) ( 1) ( 1) 1 1 1 1 1 -1 (-1) ( , 1, ) 1 -1 2 2 1 -1 2 2 2 1 1 - ( 1 1) 1 ( ) k k k k k k a z z z z z z z z z z z z z z z z z ¥ = ¥ = å < + = = + + + + + = = = å + + + ¢ é ù = ê ú ë + + = + û Q 解: 果: 首先 泰勒展 分 。 分式: 又 开 结 应 项 å å å ¥ = + ¥ = - ¥ = - - = - - - = - - × - - - = 0 1 0 1 0 ) 2 1 ( 2 1 ( 1 ) 2 1 ) 2 1 ( 2 1 ( 1 ) 2 1 ) 2 1 ( 1 ) ( 2 1 n n n k k k k k k n z z k z dz d
1 f(=)=1 z+l(x+1)2 =l∑(2y+∑ (-y(k+1) k+2 k=0 k=0 1-54 -2(-)+2-k(=-lyl k=0 k=0 ∑ye=y 1-20k=3 k+2 k=0
2 ( 1) 1 1 2 ( ) 1 + + + = - z z f z 2 0 0 2 2 0 0 0 2 0 ( 1) ( 1) ( 1) 1 ( 1) ( 1) 2 2 ( 1) ( 1) 1 4 ( 1) ( 1) 2 2 ( 1) ( 1) 2 ( 1) 1 ( 1) ( 3) 2 k k k k k k k k k k k k k k k k k k k k k k k k k z z k z z z z k ¥ ¥ + = = ¥ ¥ + + = = ¥ = ¥ + = - - + = - - + - - - × = - × - + - - + - - = - - - å å å å å å
4在量子力学中厄密多项式Hn(x)满 足如下函数关系式: F(x,)=e2=∑H(x)/k! (1把Hn(x)表示为围道积分 (2)证明Hn(x)满足厄密积分方程 dh dH 2x一+2nH=0 dx (3)导出Hn(x)的关系式 dH八=2nHn1(x) d x
2 2 -( - ) 0 2 2 -1 ( , ) ( ) / ! (1) ( ) 2 ( ) : - 2 2 0 (3) ( ) ( ) 2 ( ) 4. ( ) x t x k k k n n n n n n F x t e H x t k H x H x d H dH x nH dx dx H x dH x n x H d H x x ¥ = = = å + = = 学 为围 积 证 满 积 项 数 导 满 关 关 把 表示 道 在量子力 中厄密多 式 足如下函 系式: 分 ( ) 明 足厄密 分方程 出 的 系式:
(1)若令 H(x) k 则e k=0 1 -(t-x d t 27i H(x)=.n!=f, d t 2 问:Hn(x)有无微分式?J(x呢?
2 2 2 2 2 2 -( - ) 0 -( - ) 1 -( - ) 1 ( ) (1) ! 1 2 ! ( ) ! 2 ( ) ( ) k k x t x k k k x t x k l k x t x n n l n n n H x a k e a t e a dt i t n e H x a n dt i t H x J x — — 若令 : 有 微分式? 呢? p p ¥ = + + = = å \ = ò \ = × = ò 则 问 无
(2)由F(x,1)=∑H4(x)知: 欲证此,只要证F(x,)满足此方程即可。 C对于变量x相当于常数,即要证 a2F aF aF 2x+2t 0 Ox F=da2(y2=(,2x-(-x x d 1 2tF(x, t)
[ ] 2 2 0 2 2 -( - ) 2 ( , ) ( ) ! ( , ) : ! - 2 2 0 ( , ) 2 - 2( - )(-1) k k k k x t x t F x t H x k F x t t x k F F F x t x x x F d e F x t x t x x dx Q ( )由 知: 欲 此,只要 足此方程即可。 于 量 相 于常 ,即要 ¥ = = × å ¶ ¶ ¶ + = ¶ ¶ ¶ ¶ = = × ¶ 证 证 满 对 变 当 数 证 = 2tF ( x, t)
OF CF t 4t F(xt ax OF aF OF Ox-+at =42F(x2)-4xF(x,1)+2t·2(x-1)F(x,1)=0 将以上各项按Hn(x)展开 H"(x)-2xH(x)+2nH, (x) n=0
2 2 2 2 2 2 0 4 ( , ) - 4 ( , ) - 4 ( , ) 2 2( - ) ( , ) 0 ( ) ( ) - 2 ( ) 2 ( ) 0 ! n n t n n n n F F t t F x t x x F F F x t x x x t F x t xtF x t t x t F x t H x H x xH x nH x n 以上各 按 展 : a a ¥ = ¶ \ = ¶ × = ¶ ¶ ¶ ¶ \ ¶ × + ¶ ¶ ¶ ¶ = + × = é ù ¢¢ ¢ + ë û å = 将 项 开
n (t-x (3)Hn(x)=∮ dt 2 n+ dHn(x)n!,旦 (t-x dt 2丌 +1 2n(n-1) dt 2丌i =nhn(x)
2 2 2 2 -( - ) 1 -( - ) 1 ! (3) ( ) 2 ( ) ! 2 2 x t x n n x t x n n n e H x dt i t dH x n e t dt l dx i t — — p p + + = ò \ = × ò 2 2 - ( - ) -1 2 ( - 1 ) ! 2 2 ( ) x t x n n n n e d t i t n H x — p = ò =