免费下载网址ht:/ jiaoxue5uys168com/ 24.1直线和圆的位置关系 教学目标 1、使学生理解直线和圆的位置关系 2、初步掌握直线和圆的位置关系的数量关系定理及其运用 3、通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何 性质的能力; 教学重点: 使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经 常用到的一种关系 教学难点: 直线和圆的位置关系与圆心到直线的距离和圆的半径大小关系的对应,它既可做为各 种位置关系的判定,又可作为性质,学生不太容易理解 教学过程: 、新课引入: 我们已经学习过用点到圆心的距离和圆半径的大小关系来判断点和圆的位置关系,现 在我们用同样的数学思想方法来研究直线和圆的位置关系,请同学们回忆:1.点和圆有哪 几种位置关系?2.怎样判定点和圆的位置关系? 我们已经了解了平面上点和圆共有三种位置关系①点在圆外,②点在圆上,③点在圆 内.如果我们设⊙0的半径为r,则有下面点与圆位置的数量关系 点P在⊙O外OP>r 点P在⊙O上OP=r 点P在⊙O内兮OP<r 、新课讲解: 实际上,太阳从地平线上缓缓升起时,太阳与地平线的位置关系:铁轨上飞奔的列车 它的轮子与铁轨之间的位置关系:都给了我们直线和圆的位置关系的印象,那么平面上给 定一个圆和一条运动着的直线或给定一条定直线和一个运动着的圆,它们之间虽然有着若 干种不同的位置关系,如果从数学角度看,它的若干种位置关系能分为几大类?请同学们打 开练习本,画一画互相研究一下 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 24.1 直线和圆的位置关系 教学目标: 1、使学生理解直线和圆的位置关系. 2、初步掌握直线和圆的位置关系的数量关系定理及其运用. 3、通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何 性质的能力; 教学重点: 使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经 常用到的一种关系. 教学难点: 直线和圆的位置关系与圆心到直线的距离和圆的半径大小关系的对应,它既可做为各 种位置关系的判定,又可作为性质,学生不太容易理解. 教学过程: 一、新课引入: 我们已经学习过用点到圆心的距离和圆半径的大小关系来判断点和圆的位置关系,现 在我们用同样的数学思想方法来研究直线和圆的位置关系,请同学们回忆:1.点和圆有哪 几种位置关系?2.怎样判定点和圆的位置关系? 我们已经了解了平面上点和圆共有三种位置关系①点在圆外,②点在圆上,③点在圆 内.如果我们设⊙O 的半径为 r,则有下面点与圆位置的数量关系. 二、新课讲解: 实际上,太阳从地平线上缓缓升起时,太阳与地平线的位置关系;铁轨上飞奔的列车 , 它的轮子与铁轨之间的位 置关系;都给了我们直线和圆的位置关系的印象,那么平面上给 定一个圆和一条运动着的直线或给定一条定直线和一个运动着的圆,它们之间虽然有着若 干种不同的位置关系,如果从数学角度看,它的若干种位置关系能分为几大类?请同学们打 开练习本,画一画互相研究一下.
免费下载网址ht:/ jiaoxue5uys168com/ 学生动手画,教师巡视,当所有学生都把三种位置关系画出来时,教师可以用计算机 或幻灯机给同学们作演示,演示的过程一定要用两种方法.一是给定直线圆在动:另一方面 是给定圆,直线在动,这样学生才能从运动的观点去研究问题 最终教师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义 1、直线和圆有两个公共点时,叫做直线和圆相交.直线叫做圆的割线 2、直线和圆有唯一公共点时,叫做直线和圆相切.直线叫圆的切线,唯一的公共点叫 做切点 3.直线和圆没有公共点时,叫做直线和圆相离 (三)重点、难点的学习与目标完成过程 在直线和圆的位置关系中,直线和圆相切是非常重要的位置关系,在今后的学习中有 重要意义,务使每位同学都要清楚.除从直线和圆的公共点的个数来判断直线是否与圆相 切外,是否还有其它的判定方法呢?可提示学生,从点和圆的位置关系去考察,特别要从点 到圆心的距离与圆半径的关系去考察,若该直线1到圆心0的距离为d,⊙0半径为r,指 导学生观察已经确定的直线和圆的三种位置关系,很容易得到所需的结果 (1)直线1和⊙相交台dr 但是反过来,若先给定了直线到圆心的距离与圆的半径的数量关系,判断直线和圆的 位置关系时,学生可能有一定的困难.这时可引导学生点到直线的距离,有助于学生对困难 的解决.从而完成符号的左边“分”.向学生介绍符号“分”的意义及读法 练习一,已知圆的直径为12cm,如果直线和圆心的距离为(1)5.5cm;(2)6cm;(3) cm;那么直线和圆有几个公共点?为什么? 此题是直接运用性质进行判断 答案:(1)两个公共点,(2)一个公共点,(3)没有公共点. 练习二,已知⊙0的半径为4cm,直线1上的点A满足0A=4cm,能否判断直线1和⊙O 相切?为什么? 此题再一次强调定理中是圆心到直线的距离,这是学生容易出现问题的地方 答案:不能确定.结合具体图形指导学生发现.当OA不是圆心到直线的距离时,直线 和⊙0相交;当OA是圆心到直线的距离时,直线1是⊙O的切线 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 学生动手画,教师巡视,当所有学生都把三种位置关系画出来时,教师可以用计算机 或幻灯机给同学们作演示,演示的过程一定要用两种方法.一是给定直线圆在动;另一方面 是给定 圆,直线在动,这样学生才能从运动的观点去研究问题. 最终教师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义. 1、直线和圆有两个公共点时,叫做直线和圆相交.直线叫做圆的割线. 2、直线和圆有唯一公共点时,叫做直线和圆相切.直线叫圆的切线,唯一的公共点叫 做切 点. 3.直线和圆没有公共点时,叫做直线和圆相离. (三)重点、难点的学习与目标完成过程 在直线和圆的位置关系中,直线和圆相切是非常重要的位置关系,在今后的学习中有 重要意义,务使每位同学都要清楚.除从直线和圆的公共点的个数来判断直线是否与圆相 切外,是否还有其它的判定方法呢?可提示学生,从点和圆的位置关系去考察,特别要从点 到圆心的距离与圆半径的关系去考察,若该直线 l 到圆心 O 的距离为 d,⊙O 半径为 r,指 导学生观察已经确定的直线和圆的三 种位置关系,很容易得到所需的结果: 但是反过来,若先给定了直线到圆心的距离与圆的半径的数量关系,判断直线和圆的 位置关系时,学生可能有一定的困难.这时可引导学生点到直线的距离,有助于学生对困难 的解决.从而完成符号的左边“ ”.向学生介绍符号“ ”的意义及读法. 练习一,已知圆的直径为 12cm,如果直线和圆心的距离为(1)5.5 cm;(2)6cm;(3) 8cm;那么直线和圆有几个公共点?为什么? 此题是直接运用性质进行判断. 答案:(1)两个公共点,(2)一个公共点,(3)没有公共点. 练习二,已知⊙O 的半径为 4cm,直线 l 上的点 A 满足 OA=4cm,能否判断直线 l 和⊙O 相切?为什么? 此题再一次强调定理中是圆心到直线的距离,这是学生容易出现问题的地方. 答案:不能确定.结合具体图形指导学生发现.当 OA 不是圆心到直线的距离时,直线 l 和⊙O 相交;当 OA 是圆心到直线的距离时,直线 l 是⊙O 的切线.
免费下载网址ht:/ jiaoxue5uys168com/ 例题在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有 怎样的位置关系?为什么? (1)r=2cm,(2)r=2.4cm,(3)r=3cm 指导学生在对题目进行分析时指出,题中所给的Rt△在已知条件下各元素已为定值, 以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位 置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高 CD,在求直角三角形斜边上的高CD时用到三角形面积公式.这个方法在今后的证明时常常 用到.要求学生学会这种思考问题的方法 例题解法参考教材. 三、课堂小结: 为了培养学生阅读教材的习惯,请学生看教材,从中总结出本课学习的主要内容有: 1.从图形公共点看,直线和圆有两个公共点,直线和圆相交,直线是圆的割线:直线 和圆有唯一公共点,直线和圆相切,直线是圆的切线;直线和圆没有公共点,直线和圆相 2.直线和圆的位置关系的数量关系:即直线1和⊙0相交分dr 3.目前判断一条直线是圆的切线的方法有二:其一是直线和圆有唯一公共点,特别要 强调“唯一”一词的意义:其二是圆心到直线的距离等于圆的半径 四、布置作业 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 例题在 Rt△ABC 中,∠C=90°,AC=3cm,BC=4cm,以 C 为圆心,r 为半径的圆与 AB 有 怎样的位置关系?为什么? (1)r=2cm,(2)r=2.4cm,(3)r=3cm 指导学生在对题目进行分析时指出,题中所给的 Rt△在已知条件下各元素已为定值, 以直角顶点 C 为圆心的圆,随半径的不断变化,将与斜边 AB 所在的直线产生各种不同的位 置关系,帮助学生分析好,d 是点 C 到 AB 所在直线的距离,也就是直角三角形斜边上的高 CD,在求直角三角形斜边上的高 CD 时用到三角形面积公式.这个方法在今后的证明时常常 用到.要求学生学会这种思考问题的方法. 例题解法参考教材. 三、课堂小结: 为了培养学生阅读教材的习惯,请学生看教材,从中总结出本课学习的主要内容有: 1.从图形公共点看,直线和圆有两个公共点,直线和圆相交,直线是圆的割线;直线 和圆有唯一公共点,直线和圆相切,直线是圆的切线;直线和圆没有公共点,直线和圆相 离. 2.直线和圆的位置关系的数量关系:即直线 l 和⊙O 相交 d<r;直线 l 和⊙O 相 切 d=r;直线 l 和⊙O 相离 d>r 3.目前判断一条直线是圆的切线的方法有二:其一是直线和圆有唯一公共点,特别要 强调“唯一”一词的意义;其二是圆心到直线的距离等于圆的半径. 四、布置作业