呼 吸 考纲要求 1.肺通气:肺通气的动力和阻力。肺容量,肺通气量和肺泡通气量。 2.呼吸气体的交换:气体交换的原理。气体在肺的交换。通气血流的比值及其意义。气体在 组织的交换。 3.气体在血液中的运输:物理溶解,化学结合及其关系,氧的运输及氧解离曲线,二氧化碳 的运输 4呼吸运动的调节:呼吸中枢及呼吸节律的形成。呼吸的反射性调节。外周及中枢化学感受 器,二氧化碳对中枢的调节。运动时呼吸的变化及其调节。 考纲精要 、呼吸过程 呼吸全过程包括三个相互联系的环节:(1)外呼吸,包括肺通气和肺换气:(2)气体在血液 中的运输:(3)内呼吸 掌握要点:(1)外呼吸是大气与肺进行气体交换以及肺泡与肺毛细血管血液进行气体交换的 全过程。呼吸性细支气管以上的管腔不进行气体交换,仅是气体进出肺的通道,称为传送带 对肺泡的气体交换来说,传送带构成解剖无效腔。而呼吸性细支气管及以下结构则可进行气 体交换,称为呼吸带,是气体交换的结构。呼吸带内不能进行气体交换的部分则成为肺泡无 效腔。正常肺组织内肺泡无效腔为零,在病理情况下,可出现较大的肺泡无效腔,它和解剖 无效腔一起构成生理无效腔,所以,生理无效腔随肺泡无效腔增大而增大 (2)内呼吸指的是血液与组织细胞间的气体交换,而细胞内的物质氧化过程也可以认为是 内呼吸的一部分。 肺通气:气体经呼吸道出入肺的过程 1肺通气的直接动力一—肺泡气与大气之间的压力差(指混合气体压力差,而不是某种气体 的分压差)。 肺通气的原始动力一一呼吸运动 平静呼吸(安静状态下的呼吸)时吸气是主动的,呼气是被动的,即吸气动作是由吸气肌收 缩引起,而呼气动作则主要是吸气肌舒张引起,而不是呼气肌收缩。用力呼吸时,吸气和呼 气都是主动的。 吸气肌主要有膈肌和肋间外肌,呼气肌主要是肋间内肌。吸气肌收缩可使胸廓容积增大,肺 内气压降低,引起吸气过程。主要由膈肌完成的呼吸运动称腹式呼吸,主要由肋间外肌完成 的呼吸运动称为胸式呼吸。正常生理状况下,呼吸运动是胸式和腹式的混合型式 2.肺通气阻力:包括弹性阻力和非弹性阻力,平静呼吸时弹性阻力是主要因素 (1)弹性阻力指胸郭和肺的弹性回缩力(主要来自肺),其大小常用顺应性表示,顺应性 =1/弹性阻力。肺的顺应性可用单位压力的变化引起多少容积的改变来表示,它与弹性阻力、 表面张力成反变关系,顺应性越小表示肺越不易扩张。在肺充血、肺纤维化时顺应性降低 肺泡的回缩力来自肺组织的弹力纤维和肺泡的液一气界面形成的表面张力 (2)非弹性阻力包括气道阻力、惯性阻力和组织的粘滞阻力,其中气道阻力主要受气道管 经大小的影响。使气道平滑肌舒张的因素有:跨壁压增大、肺实质的牵引、交感神经兴奋 PGE2、儿茶酚胺类等 使气道平滑肌收缩的因素有:副交感神经兴奋、组织胺、PGF2→5-HT、过敏原等。 平静呼吸时气道阻力主要发生在直径2mm细支气管以上的部位 三、胸内压:即胸膜腔内的压力 1.胸膜腔是由胸膜壁层与胸膜脏层所围成的密闭的潜在的腔隙,其间仅有少量起润滑作用的
呼 吸 考纲要求 1.肺通气:肺通气的动力和阻力。肺容量,肺通气量和肺泡通气量。 2.呼吸气体的交换:气体交换的原理。气体在肺的交换。通气血流的比值及其意义。气体在 组织的交换。 3.气体在血液中的运输:物理溶解,化学结合及其关系,氧的运输及氧解离曲线,二氧化碳 的运输。 4.呼吸运动的调节:呼吸中枢及呼吸节律的形成。呼吸的反射性调节。外周及中枢化学感受 器,二氧化碳对中枢的调节。运动时呼吸的变化及其调节。 考纲精要 一、呼吸过程 呼吸全过程包括三个相互联系的环节:(1)外呼吸,包括肺通气和肺换气;(2)气体在血液 中的运输;(3)内呼吸。 掌握要点:(1)外呼吸是大气与肺进行气体交换以及肺泡与肺毛细血管血液进行气体交换的 全过程。呼吸性细支气管以上的管腔不进行气体交换,仅是气体进出肺的通道,称为传送带。 对肺泡的气体交换来说,传送带构成解剖无效腔。而呼吸性细支气管及以下结构则可进行气 体交换,称为呼吸带,是气体交换的结构。呼吸带内不能进行气体交换的部分则成为肺泡无 效腔。正常肺组织内肺泡无效腔为零,在病理情况下,可出现较大的肺泡无效腔,它和解剖 无效腔一起构成生理无效腔,所以,生理无效腔随肺泡无效腔增大而增大。 (2)内呼吸指的是血液与组织细胞间的气体交换,而细胞内的物质氧化过程也可以认为是 内呼吸的一部分。 二、肺通气:气体经呼吸道出入肺的过程 1.肺通气的直接动力——肺泡气与大气之间的压力差(指混合气体压力差,而不是某种气体 的分压差)。 肺通气的原始动力——呼吸运动。 平静呼吸(安静状态下的呼吸)时吸气是主动的,呼气是被动的,即吸气动作是由吸气肌收 缩引起,而呼气动作则主要是吸气肌舒张引起,而不是呼气肌收缩。用力呼吸时,吸气和呼 气都是主动的。 吸气肌主要有膈肌和肋间外肌,呼气肌主要是肋间内肌。吸气肌收缩可使胸廓容积增大,肺 内气压降低,引起吸气过程。主要由膈肌完成的呼吸运动称腹式呼吸,主要由肋间外肌完成 的呼吸运动称为胸式呼吸。正常生理状况下,呼吸运动是胸式和腹式的混合型式。 2.肺通气阻力:包括弹性阻力和非弹性阻力,平静呼吸时弹性阻力是主要因素。 (1)弹性阻力指胸郭和肺的弹性回缩力(主要来自肺),其大小常用顺应性表示,顺应性 =1/弹性阻力。肺的顺应性可用单位压力的变化引起多少容积的改变来表示,它与弹性阻力、 表面张力成反变关系,顺应性越小表示肺越不易扩张。在肺充血、肺纤维化时顺应性降低。 肺泡的回缩力来自肺组织的弹力纤维和肺泡的液一气界面形成的表面张力。 (2)非弹性阻力包括气道阻力、惯性阻力和组织的粘滞阻力,其中气道阻力主要受气道管 经大小的影响。使气道平滑肌舒张的因素有:跨壁压增大、肺实质的牵引、交感神经兴奋、 PGE2、儿茶酚胺类等。 使气道平滑肌收缩的因素有:副交感神经兴奋、组织胺、PGF2→5-HT、过敏原等。 平静呼吸时气道阻力主要发生在直径 2mm 细支气管以上的部位。 三、胸内压:即胸膜腔内的压力 1.胸膜腔是由胸膜壁层与胸膜脏层所围成的密闭的潜在的腔隙,其间仅有少量起润滑作用的
浆液,无气体存在 2胸内压大小:正常情况下,胸内压力总是低于大气压,故称为胸内负压。胸内压=大气压 (肺内压)-肺回缩力,在吸气末和呼气末,肺内压等于大气压,这时胸内压肺回缩力 故胸内负压是肺的回缩力造成的 3胸内负压形成原因:由于婴儿出生后胸廓比肺的生长快,而胸腔的壁层和脏层又粘在一起 故肺处于被动扩张状态,产生一定的回缩力。吸气末回缩力大,胸内负压绝对值大,呼气时 胸内负压绝对值变小 4胸内负压的意义: (1)保持肺的扩张状态。 (2)促进血液和淋巴液的回流(导致胸腔内静脉和胸导管扩张)。 四、肺换气 即肺泡与肺毛细血管血液之间的气体交换 1.结构基础:呼吸膜(肺泡膜),包括六层结构:(1)单分子的表面活性物质层和肺泡液体 层;(2)肺泡上皮层;(3)上皮基底膜层;(4)组织间隙层;(5)毛细血管基底膜层;(6) 毛细血管内皮细胞层。 记忆方法 呼吸膜是气体由肺泡到血液或由血液到肺泡所经过的结构,所以呼吸膜必须包括肺泡上皮和 毛细血管内皮两层,而上皮和内层组织都带有自己的基底膜,两层基底膜之间应有空隙,这 样呼吸膜就包括五层结构,加上肺泡表面的液体层,共有六层。其中肺泡表面的液体层与肺 泡气体形成液一气交界构成表面张力,是弹性阻力的主要成份,而液体层表面的肺泡表面活 性物质能降低表面张力 2肺换气的动力:气体的分压差 分压是指在混合气体中某一种气体所占的压力。 3.肺换气的原理: 肺换气与组织换气的原理完全相同。在肺部,氧气从分压高的肺泡通过呼吸膜扩散到血液, 而二氧化碳则从分压高的肺毛细血管血液中扩散到分压低的肺泡中。 4影响肺换气的因素: (1)呼吸膜的面积和厚度影响肺换气。在肺组织纤维化时,呼吸膜面积减小,厚度增加 将出现肺换气效率降低。凡影响到呼吸膜的病变均将影响肺换气,而呼吸道的病变首先影响 的是肺通气,仅当肺通气改变造成肺泡气体分压变化时才影响到肺换气 (2)气体分子的分子量,溶解度以及分压差也影响肺换气 O2的分子量小于CO2,肺泡与血液间O2分压差大于CO2分压差,仅从这两方面看,O2 的扩散速度比CO2快,但由于CO2在血浆中的溶解度远大于O2(24倍),故综合结果是 CO2比O2扩散速度快,所以当肺换气功能不良时,缺O2比CO2潴留明显。 (3)通气/血流比值是影响肺换气的另一重要因素。 通气/血流比值(VQ)是指每分钟肺泡通气量与每分肺血流量的比值,正常值为0.84左右 Q>0.84表示肺通气过度或肺血流量减少,这意味着部分肺泡无法进行气体交换,相当于 肺泡无效腔增大 Q<0.84表示肺通气不足或血流过剩或两者同时存在,这意味着有部分静脉血流过无气体 的肺泡后再回流入静脉(动脉血),也就是发生了功能性动一静脉短路。 通气/血流比值的记忆方法: 将通气/血流比值看作一个“标准”的分数,写在前面的是分子,写在后面的是分母,故通 气/血流比值(V/Q)表示每分钟肺泡通气量与每分钟肺血流量的比值 五、肺泡表面活性物质
浆液,无气体存在。 2.胸内压大小:正常情况下,胸内压力总是低于大气压,故称为胸内负压。胸内压=大气压 (肺内压)-肺回缩力,在吸气末和呼气末,肺内压等于大气压,这时胸内压=-肺回缩力, 故胸内负压是肺的回缩力造成的。 3.胸内负压形成原因:由于婴儿出生后胸廓比肺的生长快,而胸腔的壁层和脏层又粘在一起, 故肺处于被动扩张状态,产生一定的回缩力。吸气末回缩力大,胸内负压绝对值大,呼气时, 胸内负压绝对值变小。 4.胸内负压的意义: (1)保持肺的扩张状态。 (2)促进血液和淋巴液的回流(导致胸腔内静脉和胸导管扩张)。 四、肺换气 即肺泡与肺毛细血管血液之间的气体交换。 1.结构基础:呼吸膜(肺泡膜),包括六层结构:(1)单分子的表面活性物质层和肺泡液体 层;(2)肺泡上皮层;(3)上皮基底膜层;(4)组织间隙层;(5)毛细血管基底膜层;(6) 毛细血管内皮细胞层。 记忆方法: 呼吸膜是气体由肺泡到血液或由血液到肺泡所经过的结构,所以呼吸膜必须包括肺泡上皮和 毛细血管内皮两层,而上皮和内层组织都带有自己的基底膜,两层基底膜之间应有空隙,这 样呼吸膜就包括五层结构,加上肺泡表面的液体层,共有六层。其中肺泡表面的液体层与肺 泡气体形成液一气交界构成表面张力,是弹性阻力的主要成份,而液体层表面的肺泡表面活 性物质能降低表面张力。 2.肺换气的动力:气体的分压差。 分压是指在混合气体中某一种气体所占的压力。 3.肺换气的原理: 肺换气与组织换气的原理完全相同。在肺部,氧气从分压高的肺泡通过呼吸膜扩散到血液, 而二氧化碳则从分压高的肺毛细血管血液中扩散到分压低的肺泡中。 4.影响肺换气的因素: (1)呼吸膜的面积和厚度影响肺换气。在肺组织纤维化时,呼吸膜面积减小,厚度增加, 将出现肺换气效率降低。凡影响到呼吸膜的病变均将影响肺换气,而呼吸道的病变首先影响 的是肺通气,仅当肺通气改变造成肺泡气体分压变化时才影响到肺换气。 (2)气体分子的分子量,溶解度以及分压差也影响肺换气。 O2 的分子量小于 CO2,肺泡与血液间 O2 分压差大于 CO2 分压差,仅从这两方面看,O2 的扩散速度比 CO2 快,但由于 CO2 在血浆中的溶解度远大于 O2(24 倍),故综合结果是 CO2 比 O2 扩散速度快,所以当肺换气功能不良时,缺 O2 比 CO2 潴留明显。 (3)通气/血流比值是影响肺换气的另一重要因素。 通气/血流比值(V/Q)是指每分钟肺泡通气量与每分肺血流量的比值,正常值为 0.84 左右。 V/Q>0.84 表示肺通气过度或肺血流量减少,这意味着部分肺泡无法进行气体交换,相当于 肺泡无效腔增大。 V/Q<0.84 表示肺通气不足或血流过剩或两者同时存在,这意味着有部分静脉血流过无气体 的肺泡后再回流入静脉(动脉血),也就是发生了功能性动—静脉短路。 通气/血流比值的记忆方法: 将通气/血流比值看作一个“标准”的分数,写在前面的是分子,写在后面的是分母,故通 气/血流比值(V/Q)表示每分钟肺泡通气量与每分钟肺血流量的比值。 五、肺泡表面活性物质
是由肺泡Ⅱ型细胞分泌的一种脂蛋白,主要成分是二棕搁酰卵磷脂,分布于肺泡液体分子层 的表面,即在液一气界面之间 肺泡表面活性物质的生理意义:(1)降低肺泡表面张力:(2)增加肺的顺应性;(3)维持大 小肺泡容积的相对稳定:(4)防止肺不张;(5)防止肺水肿。 肺泡表面活性物质缺乏将出现:肺泡的表面张力增加,大肺泡破裂小肺泡萎缩,初生儿呼吸 窘迫综合征等病变 六、肺容量与肺通气量 1潮气量:平静呼吸时,每次吸入或呼出的气量 2.余气量:在尽量呼气后,肺内仍保留的气量。 3功能余量=余气量+补呼气量。 4肺总容量=潮气量+补吸气量+补呼气量+余气量。 5.肺活量:最大吸气后,从肺内所能呼出的最大气量。 6时间肺活量:是评价肺通气功能的较好指标,正常人头3秒分别为83%、96%、99%的肺 活量。时间肺活量比肺活量更能反映肺通气状况,时间肺活量反映的为肺通气的动态功能, 测定时要求以最快的速度呼出气体 7每分肺通气量=潮气量×呼吸频率 8每分钟肺泡通气量=(潮气量-无效腔气量)×呼吸频率 潮气量和呼吸频率的变化,对肺通气和肺泡通气有不同的影响。如潮气量减少1/2,呼吸频 率增加1倍,此时肺通气不变,而解剖无效腔占的比例比正常潮气量时大,所以肺泡通气量 减少。从气体交换的效果看,深慢呼吸比浅快呼吸有利于气体交换。 评价肺通气功能的常用指标有肺活量、时间肺活量、肺泡通气旱等,从气体交换的意义来说, 最好的指标是肺泡通气量。因为肺通气的生理意义在于摄入氧气和排出体内的二氧化碳,进 入肺内的气体中只有肺泡气能与机体进行气体交换,因此肺通气效果的好坏主要取决于肺泡 通气量的大小以及肺泡通气量是否与肺血流相适应,其它评价肺通气的指标都不能直接反映 肺通气的效果。 七、呼吸中枢及呼吸节律的形式 1是指中枢神经系统内产生和调节呼吸运动的神经细胞群,分布在大脑皮层、间脑、脑桥、 延髓、脊髓等部位。 呼吸运动的基本调节中枢在脑桥和延髓呼吸中枢。 基本呼吸节律产生于延髓,延髓是自主呼吸的最基本中枢 2呼吸中枢的结构和功能特性: 呼吸节律的发生依赖脑干两侧多个不同部位的多组神经元活动的组合,这些部位包括延髓呼 吸中枢和呼吸调整中枢等 (1)延髓呼吸中枢包括背侧呼吸组和腹侧呼吸组。背侧呼吸组实际上是孤束核的腹外侧核 大多数为吸气相关神经元,轴突交叉至对侧终止至脊髓颈、胸段的膈神经和肋间神经的运动 神经元。腹侧呼吸组包括疑核、后疑核、包氏复合体等神经核团,其中既含有吸气相关神经 元又含有呼气相关神经元。 (2)呼吸调整中枢包括脑桥前端的2对神经核团,即臂旁内侧核和相邻的 Kolliker-Fuse复 合体。其作用可能是传递冲动给吸气切断机制,使吸气及时终止,向呼气转化。此作用与刺 激迷走神经引起的吸气向呼气转化相似,如果同时切除呼吸调整中枢、迷走神经传入纤维, 动物将出现长吸气呼吸。 3呼吸节律形成的假说一一吸气切断机制: 引起吸气向呼气转化的信息来自三个方面:①吸气神经元;②呼吸调整中枢的纤维投射:③ 肺牵张感受器兴奋经传入神经将信息传至吸气切断机制
是由肺泡Ⅱ型细胞分泌的一种脂蛋白,主要成分是二棕搁酰卵磷脂,分布于肺泡液体分子层 的表面,即在液一气界面之间。 肺泡表面活性物质的生理意义:(1)降低肺泡表面张力;(2)增加肺的顺应性;(3)维持大 小肺泡容积的相对稳定;(4)防止肺不张;(5)防止肺水肿。 肺泡表面活性物质缺乏将出现:肺泡的表面张力增加,大肺泡破裂小肺泡萎缩,初生儿呼吸 窘迫综合征等病变。 六、肺容量与肺通气量 1.潮气量:平静呼吸时,每次吸入或呼出的气量。 2.余气量:在尽量呼气后,肺内仍保留的气量。 3.功能余量=余气量+补呼气量。 4.肺总容量=潮气量+补吸气量+补呼气量+余气量。 5.肺活量:最大吸气后,从肺内所能呼出的最大气量。 6.时间肺活量:是评价肺通气功能的较好指标,正常人头 3 秒分别为 83%、96%、99%的肺 活量。时间肺活量比肺活量更能反映肺通气状况,时间肺活量反映的为肺通气的动态功能, 测定时要求以最快的速度呼出气体。 7.每分肺通气量=潮气量×呼吸频率。 8.每分钟肺泡通气量=(潮气量-无效腔气量)×呼吸频率。 潮气量和呼吸频率的变化,对肺通气和肺泡通气有不同的影响。如潮气量减少 1/2,呼吸频 率增加 1 倍,此时肺通气不变,而解剖无效腔占的比例比正常潮气量时大,所以肺泡通气量 减少。从气体交换的效果看,深慢呼吸比浅快呼吸有利于气体交换。 评价肺通气功能的常用指标有肺活量、时间肺活量、肺泡通气旱等,从气体交换的意义来说, 最好的指标是肺泡通气量。因为肺通气的生理意义在于摄入氧气和排出体内的二氧化碳,进 入肺内的气体中只有肺泡气能与机体进行气体交换,因此肺通气效果的好坏主要取决于肺泡 通气量的大小以及肺泡通气量是否与肺血流相适应,其它评价肺通气的指标都不能直接反映 肺通气的效果。 七、呼吸中枢及呼吸节律的形式 1.是指中枢神经系统内产生和调节呼吸运动的神经细胞群,分布在大脑皮层、间脑、脑桥、 延髓、脊髓等部位。 呼吸运动的基本调节中枢在脑桥和延髓呼吸中枢。 基本呼吸节律产生于延髓,延髓是自主呼吸的最基本中枢。 2.呼吸中枢的结构和功能特性: 呼吸节律的发生依赖脑干两侧多个不同部位的多组神经元活动的组合,这些部位包括延髓呼 吸中枢和呼吸调整中枢等。 (1)延髓呼吸中枢包括背侧呼吸组和腹侧呼吸组。背侧呼吸组实际上是孤束核的腹外侧核, 大多数为吸气相关神经元,轴突交叉至对侧终止至脊髓颈、胸段的膈神经和肋间神经的运动 神经元。腹侧呼吸组包括疑核、后疑核、包氏复合体等神经核团,其中既含有吸气相关神经 元又含有呼气相关神经元。 (2)呼吸调整中枢包括脑桥前端的 2 对神经核团,即臂旁内侧核和相邻的 Kolliker-Fuse 复 合体。其作用可能是传递冲动给吸气切断机制,使吸气及时终止,向呼气转化。此作用与刺 激迷走神经引起的吸气向呼气转化相似,如果同时切除呼吸调整中枢、迷走神经传入纤维, 动物将出现长吸气呼吸。 3.呼吸节律形成的假说——吸气切断机制: 引起吸气向呼气转化的信息来自三个方面:①吸气神经元;②呼吸调整中枢的纤维投射;③ 肺牵张感受器兴奋经传入神经将信息传至吸气切断机制
八、呼吸的反射性调节 1.肺牵张反射(黑一伯反射):感受器位于气管和支气管平滑肌内,是牵张感受器,传入纤 维是通过迷走神经粗纤维进入延髓 肺牵张反射包括肺扩张时抑制吸气的肺扩张反射和肺缩小时引起吸气的肺缩小反射。平静呼 吸时,这两种反射都不参与人的呼吸调节,仅在病理情况下发挥作用。 2.肺毛细血管旁(J)感受器引起的呼吸反射 J感受器是位于肺胞壁毛细血管的组织间隙内,它接受组织间隙膨胀作用的刺激,反射地引 起呼吸变浅变快。 九、化学因素对呼吸的调节 1调节呼吸的化学因素:动脉血或脑脊液中的O2、CO2、H+。 2中枢化学感受器与外周化学感受器的异同点 位置 感受细胞 感受刺激 中枢感受器延髓腹外侧浅表部位神经细胞 H+]↑(pH↓)p(CO2) 外周感受器|颈动脉体和主动脉体|Ⅰ型细胞|pH;、p(CO2)↑、p(O2) 3CO2对呼吸的调节:CO2对呼吸有很强的刺激作用,一定水平的p(CO2)对维持呼吸中 枢的兴奋性是必要的。CO2通过刺激中枢和外周化学感受器,使呼吸加深加快,其中刺激 中枢化学感受器是主要途径 CO2是调节呼吸的最重要的生理性体液因子,因为:血中CO2变化既可直接作用于外周感 受器,又可以增高脊液中H浓度作用于中枢感受器:;而血中H主要作用于外周感受器 H通过血脑屏障进入脑脊液比较缓慢;O2含量变化不能刺激中枢化学感受器,同时低O2 对中枢则是抑制作用 4[H+]对呼吸的调节:血液中[H+]升高通过刺激中枢和外周化学感受器,使呼吸加强。H 主要作用于外周感受器,H通过血脑屏障进入脑脊液比较缓慢,而中枢感受器的有效刺激 是脑脊液中的H+ 低O2对呼吸的调节:O2含量变化不能刺激中枢化学感受器,p(O2)降低兴奋外周化学 感受器,对中枢则是抑制作用 6中枢化学感受器的直接生理刺激是[H+]变化而不是O2、CO2的变化 记忆方法 (1)调节呼吸的体液因子有O2、CO2、H,其中O2、CO2是脂溶性小分子物质,可以自 由地通过细胞膜,在细胞内外达到同一浓度,因此“正常”细胞不能感受O2、CO2的变化。 中枢化感的细胞是神经细胞,属于“正常”细胞,故不能感受浓O2、CO2度的变化,而外 周化感的感受细胞是I型细胞,是“特殊”功能的细胞,故能受到O2、CO2浓度变化的刺 激 (2)H不能自由通过细胞膜,故细胞外液中的H+浓度增加,对中枢化感的“正常”细胞 和外周化感的“特殊”细胞都是有效的刺激。 (3)p(CO2)↑时,在碳酸酐酶的作用下使H+增多,故p(CO2)↑能间接兴奋中枢化 学感受器 (4)由于中枢化感是“正常”感受细胞,而外周化感为“特殊”细胞,故H+增多,pCO2 增高,主要通过中枢化感调节呼吸运动 (5)由于外周化感为“特殊”感受细胞,因此它的适应性较中枢慢,当持续p(CO2)增 高对中枢化感的刺激作用出现适应现象时,不能吸入纯氧,因为需要一定的低p(O2)对外 周化感的刺激作用,以兴奋呼吸。 十、气体在血液中的运输 1.氧气的运输:包括物理溶解和化学结合
八、呼吸的反射性调节 1.肺牵张反射(黑—伯反射):感受器位于气管和支气管平滑肌内,是牵张感受器,传入纤 维是通过迷走神经粗纤维进入延髓。 肺牵张反射包括肺扩张时抑制吸气的肺扩张反射和肺缩小时引起吸气的肺缩小反射。平静呼 吸时,这两种反射都不参与人的呼吸调节,仅在病理情况下发挥作用。 2.肺毛细血管旁(J)感受器引起的呼吸反射: J 感受器是位于肺胞壁毛细血管的组织间隙内,它接受组织间隙膨胀作用的刺激,反射地引 起呼吸变浅变快。 九、化学因素对呼吸的调节 1.调节呼吸的化学因素:动脉血或脑脊液中的 O2、CO2、H+。 2.中枢化学感受器与外周化学感受器的异同点: 位置 感受细胞 感受刺激 中枢感受器 延髓腹外侧浅表部位 神经细胞 [H+]↑(pH↓)p(CO2)↑ 外周感受器 颈动脉体和主动脉体 Ⅰ型细胞 pH↓、p(CO2)↑、p(O2)↓ 3.CO2 对呼吸的调节:CO2 对呼吸有很强的刺激作用,一定水平的 p(CO2)对维持呼吸中 枢的兴奋性是必要的。CO2 通过刺激中枢和外周化学感受器,使呼吸加深加快,其中刺激 中枢化学感受器是主要途径。 CO2 是调节呼吸的最重要的生理性体液因子,因为:血中 CO2 变化既可直接作用于外周感 受器,又可以增高脊液中 H+浓度作用于中枢感受器;而血中 H+主要作用于外周感受器, H+通过血脑屏障进入脑脊液比较缓慢;O2 含量变化不能刺激中枢化学感受器,同时低 O2 对中枢则是抑制作用。 4.[H+]对呼吸的调节:血液中[H+]升高通过刺激中枢和外周化学感受器,使呼吸加强。H+ 主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢,而中枢感受器的有效刺激 是脑脊液中的 H+。 5.低 O2 对呼吸的调节:O2 含量变化不能刺激中枢化学感受器,p(O2)降低兴奋外周化学 感受器,对中枢则是抑制作用。 6.中枢化学感受器的直接生理刺激是[H+]变化而不是 O2、CO2 的变化。 记忆方法: (1)调节呼吸的体液因子有 O2、CO2、H+,其中 O2、CO2 是脂溶性小分子物质,可以自 由地通过细胞膜,在细胞内外达到同一浓度,因此“正常”细胞不能感受 O2、CO2 的变化。 中枢化感的细胞是神经细胞,属于“正常”细胞,故不能感受浓 O2、CO2 度的变化,而外 周化感的感受细胞是Ⅰ型细胞,是“特殊”功能的细胞,故能受到 O2、CO2 浓度变化的刺 激。 (2)H+不能自由通过细胞膜,故细胞外液中的 H+浓度增加,对中枢化感的“正常”细胞 和外周化感的“特殊”细胞都是有效的刺激。 (3)p(CO2)↑时,在碳酸酐酶的作用下使 H+增多,故 p(CO2)↑能间接兴奋中枢化 学感受器。 (4)由于中枢化感是“正常”感受细胞,而外周化感为“特殊”细胞,故 H+增多,pCO2 增高,主要通过中枢化感调节呼吸运动。 (5)由于外周化感为“特殊”感受细胞,因此它的适应性较中枢慢,当持续 p(CO2)增 高对中枢化感的刺激作用出现适应现象时,不能吸入纯氧,因为需要一定的低 p(O2)对外 周化感的刺激作用,以兴奋呼吸。 十、气体在血液中的运输 1.氧气的运输:包括物理溶解和化学结合
(1)物理溶解量取决于该气体的溶解度和分压大小 (2)化学结合的形式是氧合血红蛋白,这是氧运输的主要形式,占985%,正常人每100ml 动脉血中Hb结合的O2约为195ml (3)Hb是运输O2的主要工具,Hb与O2结合特点如下: ①可逆性结合:②Hb中的Fe2+仍然是亚铁状态:③是氧合而不是氧化:④结合与解离都不 需酶催化,取决于血中p(O2)的高低;⑤结合或解离曲线S型,与Hb的变构效应有关。 2.二氧化碳的运输: (1)运输形式:物理溶解占5%,化学结合:HCO3-占88%,氨基甲酸血红蛋白占T%6;(2) O2与b结合将促使CO2释放,这一效应称何尔登效应 3氧解离曲线的特点:呈S型 (1)上段较平坦,氧分压在70m/100mmHg范围变化时,Hb氧饱和度变化不大 (2)中段较陡,是HbO2释放O2部分 (3)下段最陡,HbO2稍降,就可大大下降,这有利于运动时组织的供氧。下段代表O2贮 4影响氧解离曲线的因素: H+↑、pCO2、温度升高2、3-二磷酸甘油酸(2、3-DPG)均使氧解离曲线右移,释放O2 增多供组织利用。Hb与O2的结合还为其自身性质所影响。 酸度增加降低Hb与氧亲和力的效应称为波尔效应
(1)物理溶解量取决于该气体的溶解度和分压大小。 (2)化学结合的形式是氧合血红蛋白,这是氧运输的主要形式,占 98.5%,正常人每 100ml 动脉血中 Hb 结合的 O2 约为 19.5ml。 (3)Hb 是运输 O2 的主要工具,Hb 与 O2 结合特点如下: ①可逆性结合;②Hb 中的 Fe2+仍然是亚铁状态;③是氧合而不是氧化;④结合与解离都不 需酶催化,取决于血中 p(O2)的高低;⑤结合或解离曲线 S 型,与 Hb 的变构效应有关。 2.二氧化碳的运输: (1)运输形式:物理溶解占 5%,化学结合:HCO3-占 88%,氨基甲酸血红蛋白占 7%;(2) O2 与 Hb 结合将促使 CO2 释放,这一效应称何尔登效应。 3.氧解离曲线的特点:呈 S 型 (1)上段较平坦,氧分压在 70m/100mmHg 范围变化时,Hb 氧饱和度变化不大。 (2)中段较陡,是 HbO2 释放 O2 部分。 (3)下段最陡,HbO2 稍降,就可大大下降,这有利于运动时组织的供氧。下段代表 O2 贮 备。 4.影响氧解离曲线的因素: [H+]↑、pCO2、温度升高 2、3-二磷酸甘油酸(2、3-DPG)均使氧解离曲线右移,释放 O2 增多供组织利用。Hb 与 O2 的结合还为其自身性质所影响。 酸度增加降低 Hb 与氧亲和力的效应称为波尔效应