(後只人季 23可逆矩阵
2.3 可逆矩阵
(後只人季 可逆矩阵的定义及可逆充要条件 定义29:设A为阶n方阵,若存在n阶方阵B,使 AB=BA=E 则称A是可逆矩阵,并称B为A的逆矩阵,记为A,即B=A 如果矩阵A是可逆的,则A的逆矩阵是唯一的。若设B和C都 是A的逆矩阵,则有 AB= BA=E, AC=CA=E, B=BE=B(AC)=(BA)C=EC=C
可逆矩阵的定义及可逆充要条件 1 A − ,即 1 B A− = AB BA E AC CA E = = = = , , B BE B AC BA C EC C = = = = = ( ) ( )
(後只人季 定义2.10:设A为矩阵A=anl的行列式4中元 素a的代数余子式,则称 1 nI A12A2 为A的伴随矩阵,记为A*或者adjA 由于∑akAk=∑a4 0i≠ A A*A=AA= =AE
11 21 1 12 22 2 1 2 * n n n n nn A A A A A A A A A A = 1 1 0 n n ik jk ki kj k k A i j a A a A = = i j = = = 由于 | | | | * * | | | | A A A A AA A E A = = =
(後只人季 定理22:方阵A可逆的充要条件是AB0,并且 A 证明:必要性:已知A可逆,所以有AA1=E,因此 A4|=AA4HE=1≠0 故知4H=0 充分性: A=E 故A可逆,且A1= A
定理2.2:方阵A可逆的充要条件是|A|≠0,并且 1 * | | A A A − = 1 1 | | | || | | | 1 0 AA A A E − − = = = 故知 |A|≠0. 充分性: * * | | | | A A A A E A A = = * 1 | | A A A − =
(後只人季 推论:若A、B均为η阶方阵,若AB=E,则A,B均可逆, 且A1=B,B-1=A 证明:由AB=E,得|A||B=1≠0,必有A≠ AB|≠0 A=AE=A(AB)=(A)B=B B=EB=(AB)B=A(88)=4
1 1 1 1 A A E A AB A A B B ( ) ( ) − − − − = = = = 1 1 1 1 B EB AB B A BB A ( ) ( ) − − − − = = = =
(後只人季 例1求A=322的逆矩阵 A存在4=5≠0 2, 12 7, 2 32 23
例1 求 2 1 2 322 1 2 3 A = 的逆矩阵 A-1存在 A = 5 0 11 2 2 2, 2 3 A = = 12 3 2 7, 1 3 A = − = − 13 3 2 4 1 2 A = = 21 1 2 1 2 3 A = − = 22 2 2 4, 1 3 A = = 23 2 1 3 1 2 A = − = − 31 1 2 2, 2 2 A = = − 32 2 2 2 3 2 A = − = 33 2 1 1 3 2 A = =
(後只人季 21-2 2 得A 2所以A 742 4-31 4-31
得 2 1 2 * 7 4 2 4 3 1 A − = − − 所以 1 2 1 2 1 1 * 7 4 2 5 4 3 1 A A A − − = = − −
(後只人季 可逆矩阵的性质 设A可逆,则有: (1)(41)1=A; (2) (3)(k4)1=A常数k≠0 (4)(4)4=(4)T (5)若A,B为同阶可逆矩阵,则(B)1=B1A1
可逆矩阵的性质 设A可逆,则有: (1) (A-1 ) -1=A; (2) (3) (4) (AT) -1=(A-1 ) T (5)若A,B为同阶可逆矩阵,则(AB) -1=B-1A-1 常数 k 0 1 1 1 ( ) kA A k − − = 1 1 A A− − =
(後只人季 证明(5): (AB)(B34)=4(B8)=AEA A4-=E (AB=BA 推广(4142…A)=An1421A1
证明(5): ( )( ) ( ) 1 1 1 1 1 1 AB B A A BB A AEA AA E − − − − − − = = = = ( ) 1 1 1 AB B A − − − = ( ) . 1 2 1 2 − − 推广 A1 A Am = A −1 Am −1 A1