(後只人季 22矩阵的代数运算
2.2矩阵的代数运算
()後大手 矩阵的加减法与数量乘法 定义22:设A=[anmm,B=[blmn,则矩阵A与B的和 为 A+b= lai+ bi l 即两个矩阵相加等于把这两个矩阵的对应元素相加 注意:仅当两个矩阵具有相同的行数和列数时才能相加 例1设 213 -6321 B 70-40 2-61+33+21「-4424 A+B= 1+73+08-40 63-32
例1 设 2 1 3 1 3 8 A = − 6 3 21 7 0 40 B − = − 2 6 1 3 3 21 4 4 24 1 7 3 0 8 40 6 3 32 A B − + + − + = = − + + − − 矩阵的加减法与数量乘法
(後只人季 矩阵的加法,它满足下列运算律: (1)A+B=B+A (2)(A+B)+C=A+(B+C) 定义23:设A=[ar],其负矩阵为: 显然:A+(-A)=0、A-B=A+(-B)
矩阵的加法,它满足下列运算律: (1) A B B A + = + (2) ( ) ( ) A B C A B C + + = + +
(後只人季 定义24:数k与矩阵A=an]的数量乘积为 kA=k m米n 例2设 2-1 3×23×(-1) 3A=3×(-3)3×0= 3×0 3×1 数与矩阵的乘法满足下列运算律: (1)(k+D)A=kA+ lA (2)k(4+B)=k4+kB (3)k(lA)=(M)A
例2 设 2 1 3 0 0 1 A − = − 3 2 3 ( 1) 6 3 3 3 ( 3) 3 0 9 0 3 0 3 1 0 3 A − − = − = − 数与矩阵的乘法满足下列运算律: (1) (2) ( ) k l A kA lA + = + (3) k A B kA kB ( ) + = + k lA kl A ( ) ( ) =
(後只人季 矩阵的乘法 定义25:设两矩阵A=[4LmB=[l 则矩阵C=[cln ∑ nikki =1 A的第i行元素与B的第j列对应元素乘积的和 称为A与B的乘积,记为:C=AB
矩阵的乘法 定义2.5: 设两矩阵 则矩阵 ik m t A a = kj t n B a = ij m n C c = 1 l ij ik kj k c a b = = 称为A与B的乘积,记为:C=AB A的第 i 行元素与B的第 j 列对应元素乘积的和
(後只人季 例3设 B=[bb2…b] a, 6, a, b2 AB=/4
例3 设 1 2 m a a A a = B b b b = 1 2 n 1 1 1 2 1 2 1 2 2 2 1 2 n n m m m n a b a b a b a b a b a b AB a b a b a b =
(後只人季 22 例4设4=010 B=13 L0 102122 AB=01013|= -1×2+0×1+2×0-1×2+0×3+2×1 0×2+1×1+0×00×2+1×3+0×1 l×2+(-1)×1+1×01×2+(-1)×3+1×1 20 3
例4 设 1 0 2 0 1 0 1 1 1 A − = − 2 2 1 3 0 1 B = 1 0 2 2 2 0 1 0 1 3 1 1 1 0 1 1 2 0 1 2 0 1 2 0 3 2 1 0 2 1 1 0 0 0 2 1 3 0 1 1 2 ( 1) 1 1 0 1 2 ( 1) 3 1 1 2 0 1 3 1 0 AB − = = − − + + − + + + + + + + − + + − + − =
(後只人季 例5设A1-1 20 B 0-2 则有: 1-1111 22 AB= 2-2 1-1120 22 AC= B4= 1矩阵的乘法不满足交换律. 2由AB=0不一定推出A=0或B=0,C 3.由AB=AC,A不为0,不一定推出B
例5 设 1 1 1 1 B = − − 1 1 1 1 A − = − 2 0 0 2 C = − 则有: 1 1 1 1 2 2 1 1 1 1 2 2 AB − = = − − − − − 1 1 1 1 0 0 1 1 1 1 0 0 BA − = = − − − 1 1 2 0 2 2 1 1 0 2 2 2 AC − = = − − − − 1.矩阵的乘法不满足交换律. 2. 由AB=0不一定推出A=0或B=0, 3. 由AB=AC,A不为0,不一定推出B=C
(後只人季 矩阵乘法的运算规律 (1(ABC=A(BC (2)A(B+C)=AB+AC (B+C)A= B4+CA (3)k(AB)=(k)B=4(kB) 证明(1): 4B)C1=∑AB1=2∑qb=∑∑qb2 k=1t=1 4(BCn=∑an{BC1=∑∑h=∑∑qb2c t=1k=1
矩阵乘法的运算规律 (1) ( AB C A BC ) = ( ) (2) A B C AB AC ( + = + ) (B C A BA CA + = + ) (3) k AB kA B A kB ( ) = = ( ) ( ) 证明(1): 1 1 1 1 1 {( ) } { } l l s l s ij ik kj it tk kj it tk kj k k t k t AB C AB c a b c a b c = = = = = = = = 1 1 1 1 1 { ( )} { } s s l s l ij it tj it tk kj it tk kj t t k t k A BC a BC a b c a b c = = = = = = = =
(後只人季 定理21:若A、B都是方阵,则|AB=|AB 证明:设A=an B=b AB=C=c nXn Inn A 0 考虑D B ⅠB A0A C D IB|-0 =C×(-1) 1+2+…+n+(n+1)+…+2n 推论:442…4=442…4k
证明:设 ij n n A a = ij n n B b = ij n n AB C c = = 考虑 A 0 D A B I B = = − 1 2 ( 1) 2 0 0 ( 1) n n n A A C D I B I C I C + + + + + + + = = − − = − − = 推论: A A A A A A 1 2 1 2 k k =