免费下载网址ht:/ jiaoxue5uys168com/ 《二元一次方程组》 课程目标 、知识与技能目标 1.通过举例使学生准确理解二元一次方程、二元一次方程组解的概念,并熟练地运用代 入消元法、加减消元法解二元一次方程组 2.举出生活中用二元一次方程组解决问题的实例,抓住列二元一次方程组解决实际问题 中的关键,找到相等关系,熟练地建模. 3.通过列方程组解决实际问题,提高分析和综合的能力 过程与方法目标 1.通过复习巩固解二元一次方程组的方法,进一步体会解二元一次方程组的基本思想 消元,体会化归思想 2.通过列方程组解决实际问题,培养学生分析问题、解决问题的能力,传授数学思想、 数学方法 三、情感态度与价值观目标 1.通过实际问题,对学生进行思想教育,提高学习数学的积极性、培养学生合作交流的 意识 2.在交流和反思的过程中建立知识体系,体验学习数学的成就感 教材解读 本节课主要是举例说明怎样用代入法和加减法解二元一次方程组,并用二元一次方程组 解决一些具体的实际问题. 学情分析 本章内容是初中数学中对于培养价值观要求极为理想的教学内容——既有知识、技能 又可培养学生分析问题、解决问题的能力,还有几种重要的数学思想——化归思想、方程思 想等,难点在于列方程组解决实际生活中的问题,应多鼓励学生独立思考 创设情境,导入新课 我们与现实生活中一些实际问题打交道这么久,用二元一次方程组解决了许多问题,今 天我们对这段时间所接触的内容一起来回顾一下 二、师生互动,课堂探究 (一)提出问题,引发讨论 1.举例说明怎样用代入法和加减法解二元一次方程组,“代入”与“加减”的目标是什 2.用二元一次方程组解决一个实际问题,你能说说用方程组解决实际问题的基本思路 吗? 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 《二元一次方程组》 课程目标 一、知识与技能目标 1.通过举例使学生准确理解二元一次方程、二元一次方程组解的概念,并熟练地运用代 入消元法、加减消元法解二元一次方程组. 2.举出生活中用二元一次方程组解决问题的实例,抓住列二元一次方程组解决实际问题 中的关键,找到相等关系,熟练地建模. 3.通过列方程组解决实际问题,提高分析和综合的能力. 二、过程与方法目标 1.通过复习巩固解二元一次方程组的方法,进一步体会解二元一次方程组的基本思想 ──消元,体会化归思想. 2.通过列方程组解决实际问题,培养学生分析问题、解决问题的能力,传授数学思想、 数学方法. 三、情感态度与价值观目标 1.通过实际问题,对学生进行思想教育,提高学习数学的积极性、培养学生合作交流的 意识. 2.在交流和反思的过程中建立知识体系,体验学习数学的成就感. 教材解读 本节课主要是举例说明怎样用代入法和加减法解二元一次方程组,并用二元一次方程组 解决一些具体的实际问题. 学情分析 本章内容是初中数学中对于培养价值观要求极为理想的教学内容──既有知识、技能, 又可培养学生分析问题、解决问题的能力,还有几种重要的数学思想──化归思想、方程思 想等,难点在于列方程组解决实际生活中的问题,应多鼓励学生独立思考. 一、创设情境,导入新课 我们与现实生活中一些实际问题打交道这么久,用二元一次方程组解决了许多问题,今 天我们对这段时间所接触的内容一起来回顾一下. 二、师生互动,课堂探究 (一)提出问题,引发讨论 1.举例说明怎样用代入法和加减法解二元一次方程组,“代入”与“加减”的目标是什 么? 2.用二元一次方程组解决一个实际问题,你能说说用方程组解决实际问题的基本思路 吗?
免费下载网址ht:/ jiaoxue5uys168com/ (二)导入知识,解释疑难 1.举列说明怎样用代入法和加减法解二元一次方程组: 例1:解方程组 2x+3y=16 x+4y=12② 分析:对于方程组中的②中,有一个未知数的系数为1,因此可以把②变形为x=13-4y, 用代入法消去方程①中的未知数x,从而求出y的值 解:由②,得x13-4y③ 把③代入①,得2(13-4y)+3y=16 把y=2代入③,得x=5 所以原方程组的解是 2x+3y=12① 例2:解方程组 13x+4y=17② 分析:未知数的系数没有绝对值为1的,也没有哪一个未知数的系数相同或相反,我们 观察可以发现,x的系数绝对值较小,因此,我们找到2和3的最小公倍数6,然后把①×3, ②×2,便可将①②的x的系数化为相同,这样通过相减就可以把未知数x消去 解:①×3,得6x+9y=36③ ②×2,得6x+8y=34④ ③④,得y=2 将y=2代入①,得x=3 所以原方程组的解是/=3 =2 用代入法和加减法解二元一次方程组时,“代入”与“加减”的目的就是“消元”,化“二 元”为“一元” 2.用二元一次方程组解决实际问题 例3:某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的 优惠价格买了5件,结果商店都获得利润200元,求这批衬衫的进价是多少元?标价是多少 元 分析:利润=售价-进价.问题中的两个等量关系为:①当商店把20件衬衫卖给甲顾客时 的相等关系是(标价×70%-进价)×20=200:②当商店把5件衬衫卖给乙顾客时的相等关系是 (标价×80%-进价)×5=200.由此可以发现两个等量关系中只涉及到标价和进价不知,故可直 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com (二)导入知识,解释疑难 1.举列说明怎样用代入法和加减法解二元一次方程组: 例 1:解方程组 2 3 16 4 12 x y x y + = + = 分析:对于方程组中的②中,有一个未知数的系数为 1,因此可以把②变形为 x=13-4y, 用代入法消去方程①中的未知数 x,从而求出 y 的值. 解:由②,得 x=13-4y ③ 把③代入①,得 2(13-4y)+3y=16 -5y=-10 y=2 把 y=2 代入③,得 x=5 所以原方程组的解是 5 2 x y = = 例 2:解方程组 2 3 12 3 4 17 x y x y + = + = 分析:未知数的系数没有绝对值为 1 的,也没有哪一个未知数的系数相同或相反,我们 观察可以发现,x 的系数绝对值较小,因此,我们找到 2 和 3 的最小公倍数 6,然后把①×3, ②×2,便可将①②的 x 的系数化为相同,这样通过相减就可以把未知数 x 消去. 解:①×3,得 6x+9y=36 ③ ②×2,得 6x+8y=34 ④ ③-④,得 y=2 将 y=2 代入①,得 x=3 所以原方程组的解是 3 2 x y = = 用代入法和加减法解二元一次方程组时,“代入”与“加减”的目的就是“消元”,化“二 元”为“一元”. 2.用二元一次方程组解决实际问题 例 3:某商店购进一批衬衫,甲顾客以 7 折的优惠价格买了 20 件,而乙顾客以 8 折的 优惠价格买了 5 件,结果商店都获得利润 200 元,求这批衬衫的进价是多少元?标价是多少 元? 分析:利润=售价-进价.问题中的两个等量关系为:①当商店把 20 件衬衫卖给甲顾客时 的相等关系是(标价×70%-进价)×20=200;②当商店把 5 件衬衫卖给乙顾客时的相等关系是 (标价×80%-进价)×5=200.由此可以发现两个等量关系中只涉及到标价和进价不知,故可直 ① ② ① ②
免费下载网址htp/ JIaoxue5uys168com 接设出标价和进价 解:设这批衬衫的进价为x元,标价为y元,根据题意,得 (70%y-x)×20=200 (809y-x)×5=200 0.7y-x=10 化简方程组,得 l08y-x=40 ②-①,得0.1y=30y=300 把y=300代入①,得0.7×300-x=10x=200 =200 所以方程组的解为 y=300 答:这批衬衫进价是200元,标价是300元 例4:某超市出售的某种茶壶每只定价20元,茶杯每只定价3元,该超市在营销淡季 特规定一项优惠方法,即买一只茶壶赠送一只茶杯,小明花了170元,买回茶壶和茶杯一共 38只,问小明买回茶壶和茶杯各多少只? 分析:先要联系实际,结合生活经历去审题,弄清数量关系必须明白在买回的茶杯中 有一些是商场赠送的,不需要花钱,而这个数目恰好是买回茶壶的数目.问题中的两个等量 关系:茶壶只数+茶杯只数=38只:买茶壶的钱+买茶杯的钱(送的除外)=170元 解:设小明买回茶壶x只,买回茶杯y只,则茶杯数目中花了钱的为(yx)只,根据题意得, x+y=38 20x+3(y-x)=170 4 解得 y=34 答:小明买回茶壶4只,茶杯34只 在上面设未知数时采用了直接设法,也可采用间接的方法设未知数,如: 「x+y=38-x 设小明买了茶壶x只,茶杯y只(不包括赠送的),根据题意,得 20x+3y=170 解得 y=30 xy=4+30=34 答:小明买回茶壶4只,茶杯34只 师生共析:用方程组解决实际问题时,应先分析题目中的已知量、未知量是什么,各个 量之间的关系是什么,找出它们之间的相等关系,列出方程组,然后求出这个方程组的解. 用方程组解决实际问题的主要步骤为 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 接设出标价和进价. 解:设这批衬衫的进价为 x 元,标价为 y 元,根据题意,得 (70% ) 20 200 (80% ) 5 200 y x y x − = − = 化简方程组,得 0.7 10 0.8 40 y x y x − = − = ②-①,得 0.1y=30 y=300 把 y=300 代入①,得 0.7×300-x=10 x=200 所以方程组的解为 200 300 x y = = 答:这批衬衫进价是 200 元,标价是 300 元. 例 4:某超市出售的某种茶壶每只定价 20 元,茶杯每只定价 3 元,该超市在营销淡季 特规定一项优惠方法,即买一只茶壶赠送一只茶杯,小明花了 170 元,买回茶壶和茶杯一共 38 只,问小明买回茶壶和茶杯各多少只? 分析:先要联系实际,结合生活经历去审题,弄清数量关系.必须明白在买回的茶杯中, 有一些是商场赠送的,不需要花钱,而这个数目恰好是买回茶壶的数目.问题中的两个等量 关系:茶壶只数+茶杯只数=38 只;买茶壶的钱+买茶杯的钱(送的除外)=170 元. 解:设小明买回茶壶 x 只,买回茶杯 y 只,则茶杯数目中花了钱的为(y-x)只,根据题意得, 38 20 3( ) 170 x y x y x + = + − = 解得 4 34 x y = = 答:小明买回茶壶 4 只,茶杯 34 只. 在上面设未知数时采用了直接设法,也可采用间接的方法设未知数,如: 设小明买了茶壶 x 只,茶杯 y 只(不包括赠送的),根据题意,得 38 20 3 170 x y x x y + = − + = 解得 4 30 x y = = x+y=4+30=34 答:小明买回茶壶 4 只,茶杯 34 只. 师生共析:用方程组解决实际问题时,应先分析题目中的已知量、未知量是什么,各个 量之间的关系是什么,找出它们之间的相等关系,列出方程组,然后求出这个方程组的解. 用方程组解决实际问题的主要步骤为: ① ②
免费下载网址ht:/ jiaoxue5uys168com/ (1)弄清题意和题目中的等量关系,用字母表示题目中的两个未知数. (2)找出能够表示问题中全部含义的两个相等关系 (3)根据这两个相等关系列出相关的代数式,从而列出方程并组成方程组 (4)解这个方程组并求出未知数的值 5)根据应用题的实际意义,检查求得的结果是否合理 (6)写出符合题意的解 3.做一做 (1)判断下列方程(或方程组)是否为二元一次方程(组),并说明理由 =1 ①3x4y=5 y+2x=2⑨ 3x-4y=6 (2)若方程组 jax-by=6 与方程组 有相同的解,求a、b的值 by=2 3)若/=1 x=3 都是方程ax+by+2=0的解,试判断{是否为方程abz 的又一个解? 答案:(1)①是二元一次方程④是二元一次方程组(2)a=4,b=-1(3)是 4.本章知识体系 实际问题设未知数列方程组、数学间题 (二元一次方程组) 方/代入法 (消元) 际问题答案 检验 数学问题的解 二元一次方程组的解) (三)归纳总结,知识回顾 通过对这一章所学知识的系统总结,我们已能从实际问题情境中加强对概念、方法意义 的理解,掌握了解二元一次方程组的方法及所渗透的重要的数学思想 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com (1)弄清题意和题目中的等量关系,用字母表示题目中的两个未知数. (2)找出能够表示问题中全部含义的两个相等关系. (3)根据这两个相等关系列出相关的代数式,从而列出方程并组成方程组. (4)解这个方程组并求出未知数的值. (5)根据应用题的实际意义,检查求得的结果是否合理. (6)写出符合题意的解. 3.做一做 (1)判断下列方程(或方程组)是否为二元一次方程(组),并说明理由. ①3x-4y=5 ②2x- 1 2y =1 ③ 1 2 2 x y y z − = + = ④ 3 3 4 6 y x y = − = (2)若方程组 6 2 ax by ax by − = + = 与方程组 2 3 4 4 5 6 x y x y − = − − = − 有相同的解,求 a、b 的值. (3)若 1 1 x y = = 及 2 3 x y = = 都是方程 ax+by+2=0 的解,试判断 3 5 x y = = 是否为方程 ax+by+z=0 的又一个解? 答案:(1)①是二元一次方程 ④是二元一次方程组 (2)a=4,b=-1 (3)是 4.本章知识体系 设未知数,列方程组 实际问题答案 检验 数学问题的解 (二元一次方程组的解) 代入法 加减法 (消元) 解 方 程 组 数学问题 实际问题 (二元一次方程组) (三)归纳总结,知识回顾 通过对这一章所学知识的系统总结,我们已能从实际问题情境中加强对概念、方法意义 的理解,掌握了解二元一次方程组的方法及所渗透的重要的数学思想