9.1习题2 1.细杆的一端弹性固定,初始时刻在另一端受到一纵向 冲量作用,但初始位移为零,试求杆的纵振动。 解 0 u(x, t)+hu, (x,D)x-l=0 △P 1=0=0/ 只出现于ε 小段 0(E<x≤ 0区 n1=0-1/(x≤E) mu= pau
9.1 习题2 1. 细杆的一端弹性固定,初始时刻在另一端受到一纵向 冲量作用,但初始位移为零,试求杆的纵振动。 k 0 l I 解: 0 2 utt − a uxx = u t=0 = 0 . / ( ) 0 ( ) 0 = = I x x l ut t ux (x,t) x=0 = 0 u(x,t) + hux (x,t) x=l = 0 0 I = P 只出现于ε 一小段。 = mut = ut
分离变量+a2T=0 X"+λX=0(0):=0k(+hx()=0 A>0 X(x)=C, cos ax+ C2 sin vax X(x)=√AC2cos√Ax-Clsn√4x AX(0)=0國2= xX(O)+hN=0國→ X()+bX(D)=C[cos√l-hλsn√=0 cgl=h√
'' 0; 2 T +a T = X ''+X = 0; X '(0) = 0 X (l) + hX '(l) = 0. 0 X (x) C cos x C sin x = 1 + 2 X '(0) = 0 C2 = 0 '( ) [ cos sin ] 2 1 X x = C x −C x X (l) + hX '(l) = 0. X (l) + hX '(l) = C1 [cos l − h sin l] = 0 分离变量 ctg l = h
以0=此式确定本征值园,为交点 AX(x)=C2COS√λx T+nT a2 naat T=0 T(t)=Acos+Bsin nzA、B是积分常数 n=12.3… 42(x)=(A,cos√2+ B. sin√2a)cosy1x 1(x:)∑(4syxm+Bsm√a)coyx
cot l h = 此式确定本征值 n ,为交点。 2 4 6 8 10 12 -30 -20 -10 10 20 30 X x C x n ( ) cos = 2 '' 0; 2 2 2 2 + T = l n a T ( ) cos sin , l n at B l n at T t A = + A、B 是积分常数。 u (x,t) (A cos at B sin at)cos x. n = n n + n n n n =1,2,3 ( , ) ( cos sin ) cos . 1 u x t A at B at x n n n n n n = + =
1+cos2、λ,x [cos a,x]'dx dx=2+cos2√nxx 0 sn2√,x sIn 2 2sin√ 2.l cos√Al sIn lcot√ X vAn cot2√λ,l+122x,h2+1 cot√x h cot√=h√ 1-cos2√n sn√nxax= 0 2 224h2+1
2 1 1 cot 1 2 cot 2 1 2 sin cot 2 1 2 2sin cos 4 1 2 sin 2 4 1 2 sin 2 4 1 2 cos 2 2 1 2 2 1 cos 2 [cos ] 2 2 2 0 0 0 0 2 2 + = + + = + = + = + = + = + = + + = = h l h l l l l l l l l l l l x l xdx l dx x N x dx n n n n n n n n n n n n l n n l n l n l n n 2 1 1 2 2 1 cos 2 [sin ] 2 0 0 2 + = − − = h l h dx x x dx n l n l n cot l h =
cOS X cOS ∫cos√)x+cox+√m) sin( sin( 2-√m n SIn( 22+ siny2,lcos√nl-cos√λ iI sin√nl,sin√2lcos√nl+cos√λ il sin a, sin a, I cos cosa, sin v am/ √si2 sin ascot√ λ.cot Sin V: m ,sn√ √ n V/hsin√ x sin am x-√m√hsi xSin VAmx=0
0 0 0 0 1 cos cos [cos( ) cos( ) ] 2 1 sin( ) sin( ) { } 2 1 sin( ) sin( ) [ ] 2 1 sin cos cos sin sin cos cos sin [ ] 2 s l l n m n m n m n m n m l l n m n m n m n m n m n m n m n m n m n m n m n m n x xdx x x dx x x l l l l l l l l l l = − + + − + = + − + − + = + − + − + = + − + = in cos cos sin sin sin cot cot sin sin sin sin sin sin 0 n m m n m n n m m m n n m n m n m nm n n m l l l l l l l l l l h x x h x x − = − = − =
t=0 ∑ A, cos a,x=0 0(E<x≤D) n aB co 0(E<x≤D) t|t=0 l/ps(x≤) n=1 /pE(x≤E) sm、E B coS,xdx= N2√A,apE N n 1/N2 2 h+1(2h2+1) B a, ap h+l(a,h+ 2 (x,t)= sIn at cos aDa√nh+l(xh2+1)
0 u t=0 = cos 0. 1 = = A x n n n . / ( ) 0 ( ) 0 = = I x x l ut t .. / ( ) 0 ( ) cos 1 = = I x x l aB x n n n n An = 0 N a I N a I xdx I N a B n n n n n n n n n n 2 0 2 0 2 sin cos 1 → = = → ( 1) 2 1/ 2 2 + + = h l h N n n ( 1) 2 2 + + = a h l h I B n n n sin cos . ( 1) 2 1 1 ( , ) 1 2 at x a h l h I u x t n n n n n = + + =
2.均匀弦两端固定,初始位移和初始速度为零。 求在重力下的弦振动。 解 L.- 8x) x=0 u(xt t=0 0 (x1)=∑T(sin n7 带入泛定方程∑o+(mr()m g|Z(o)=0T'(O)=0 =0 Tn"()+(",)2Tn(1)=2|(-g)sn n兀 ds 8An75|1 cOS 4 g k=0,1, (2k+1) k"((2k+1)m -)27(t) g (2k+1)
2. 均匀弦两端固定,初始位移和初始速度为零。 求在重力下的弦振动。 解: utt − a uxx = −g 2 0 u t=0 = 0. ut t=0 = u(x,t) x=0 = 0 u(x,t) x=l = 0 = = 0 ( , ) ( )sin n n l n x u x t T t 带入泛定方程 g l n x T t l n a T t n n + n = − =0 2 [ ''( ) ( ) ( )]sin d l n g l T t l n a T t l n n ( )sin 2 ''( ) ( ) ( ) 0 2 + = − l l n n g 0 cos 2 = [( ) 1] 2 = − − n n g 0,1, (2 1) 4 = + = k k g (2 1) 4 ) ( ) (2 1) ''( ) ( 2 + = + + k g T t l k a T t k k Tn (0) = 0 Tn '(0) = 0
(2k+1)m )27(t) g (2k+1) 7(O)=0T(O)=0 两边在拉普拉斯变换: 4 p27(p)+( 2k+1)m g P p(2k+1) 4 (p)= g [p2+( (2k+1)ma )2]p(2k+1)丌 作拉普拉斯反演(如6.4应用题): 1=sin at L[-]= p +@@ 4gl 7(0) (2k+1)m SIn (t-rdt (2k+1)2r2an
(2 1) 4 ) ( ) (2 1) ''( ) ( 2 + = + + k g T t l k a T t k k Tn (0) = 0 Tn '(0) = 0 两边在拉普拉斯变换: (2 1) 4 ( ) ~ ) (2 1) ( ) ( 2 ~ 2 + = + + p k g T p l k a p Tk p k ) ] (2 1) (2 1) [ ( 4 ( ) ~ 2 2 + + + = p k l k a p g Tk p 作拉普拉斯反演(如6.4应用题): [ ] sin , 2 2 1 t p = + − L ] 1, 1 [ 1 = − p L t d l k a k a gl T t t k ( ) (2 1) sin (2 1) 4 ( ) 0 2 2 − + + =
4gl () (2k+1)m sIn 2k+1)2z2a (t-r dr g4 Cos(2k+1)ria (2k+1)2a 4 g (2k+1)mt COS (2k+1)3ra 得 丌a/2k+[1-、(2k+1)mt 4g12 nIA l(x,) ∑ Isin
t d l k a k a gl T t t k ( ) (2 1) sin (2 1) 4 ( ) 0 2 2 − + + = t t l k a k a gl 3 3 2 0 2 ( ) (2 1) cos (2 1) 4 − + + = ] (2 1) [1 cos (2 1) 4 3 3 2 2 l k at k a gl + − + = = + − + = 0 3 2 3 2 ]sin (2 1) [1 cos (2 1) 4 1 ( , ) k l n x l k at a k gl u x t 得
高维波动方程例 均匀正方形薄膜固定于边沿,初始形状为A(-xX-y), A是常数。初始速度为零。求其自由振动规律 解:泛定方程 u-af(ux+uw)=0 边界条件1(x,y2)-0=00xy: u(x,), D)y-o=0 u(x, oI 初始条件p=4A(-x1-y 0
高维波动方程例: 均匀正方形薄膜固定于边沿,初始形状为 , A是常数。初始速度为零。求其自由振动规律。 Axy(l − x)(l − y) ( ) 0 2 utt −a uxx +uyy = ( )( ) 0 u Axy l x l y t= = − − 0. ut t=0 = u(x, y,t) x=0 = 0 u(x, y,t) x=l = 0 解: 泛定方程 边界条件 ( , , ) 0 u(x, y,t) y=l = 0 u x y t y=0 = 初始条件