免费下载网址http:/jiaoxue5u.ys168.com/ 18.2.2菱形 、教学目的: 1.掌握菱形概念,知道菱形与平行四边形的关系. 2.理解并掌握菱形的定义及性质1、2:会用这些性质进行有关的论证和计算,会计算 菱形的面积 3.通过运用菱形知识解决具体问题,提高分析能力和观察能力 4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想 重点、难点 1.教学重点:菱形的性质1、2. 2.教学难点:菱形的性质及菱形知识的综合应用 3.难点的突破方法: (1)课堂上演示由平行四边形改变成菱形.使学生对平行四边形与菱形的关系形成深 刻的印象 (2)讲解这个定义时,要抓住概念的本质,应突出两条:①强调菱形是平行四边形 ②一组邻边相等.另外还需指出定义既是判定又是性质 (3)菱形的性质,可以让学生动手利用折纸、剪切的方法,探究、归纳 方法一:将一张长方形的纸横对折,再竖对折(如教材P107的探究),然后沿图中的虚 线剪下,打开即是菱形纸片 方法二:如图1,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形 图2 方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后 打开即是菱形(如图2) (3)要让学生知道性质1的已知:如图,菱形ABCD,和结论 AB=BC=CD=DA 性质2的己知:如图,在菱形ABCD中,对角线AC、BD相交 于点0,和结论:AC⊥BD,AC平分∠BAD和∠BCD:B平分∠ABC 和∠ADC.并能灵活运用 (4)指出:菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所 以两条对称轴互相垂直 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 18.2.2 菱形 一、教学目的: 1.掌握菱形概念,知道菱形与平行四边形的关系. 2.理解并掌握菱形的定义及性质 1、2;会用这些性质进行有关的论证和计算,会计算 菱形的面积. 3.通过运用菱形知识解决具体问题,提高分析能力和观察能力. 4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想. 二、重点、难点 1.教学重点:菱形的性质 1、2. 2.教学难点:菱形的性质及菱形知识的综合应用. 3.难点的突破方法: (1)课堂上演示由平行四边形改变成菱形.使学生对平行四边形与菱形的关系形成深 刻的印象; (2)讲解这个定义时,要抓住概念的本质,应突出两条:①强调菱形是平行四边形; ②一组邻边 相等.另外还需指出定义既是判定又是性 质. (3)菱形的性质,可以让学生动手利用折纸、剪切的方法,探究、归纳. 方法一:将一张长方形的纸横对折,再竖对折(如教材 P107 的探究),然后沿图中的虚 线剪下,打开即是菱形纸片; 方法二:如图 1,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD 就是菱形; 图 1 图 2 方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后 打开即是菱形(如图 2) . (3)要让学生知道性质 1 的已知:如图,菱形 ABCD,和结论: AB=BC=CD=DA. 性质 2 的已知:如图,在菱形 ABCD 中,对角线 AC、BD 相交 于点 O,和结论:AC⊥BD,AC 平分∠BAD 和∠BCD;BD 平分∠ABC 和∠ADC.并能灵活运用. (4)指出:菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所 以两条对称轴互相垂直.
免费下载网址http:/jiaoxue5u.ys168.com/ (5)让学生知道:菱形ABCD被对角线AC、BD分成了四个全等的直角三角形,在计算 或证明时常用这个结论 (6)菱形的面积公式是S=2xS△ABD=2×(xBD×AO)= BDx AO=ab(其中a、b 是菱形的两条对角线分别的长).即:“菱形的面积等于它的两条对角线长的积的一半”.还 要指出:当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积S=底 高 三、例题的意图分析 本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质:例2是教材P56 中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目, 除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练 灵活地运用知识 四、课堂引入 1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么? 2.(引入)我们已经学习了一种特殊的平行四边形一一矩形,其实还有另外的特殊平行 四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改 变平行四边形的边,使之一组邻边相等,从而引出菱形概念 平行四边形 邻边相等 菱形 菱形定义:有一组邻边相等的平行四边形叫做菱形 【强调】菱形(1)是平行四边形;(2)一组邻边相等 让学生举一些日常生活中所见到过的菱形的例子 五、例习题分析 例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E. 求证:∠AFD=∠CBE 证明:∵四边形ABCD是菱形 ∴CB=CD,CA平分∠BCD 人 ∠BCE=∠DCE.又CE=CE △BCE≌△COB(SAS) ∠CBE=∠CDE 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC ∴∠AFD=∠CBE 例2(教材P56例2)略 六、随堂练习 1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积 解压密码联系qq19139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com (5)让学生知道:菱形 ABCD 被对角线 AC、BD 分成了四个全等的直角三角形,在计算 或证明时常用这个结论. (6)菱形 的面积公式是 S S ABD BD AO BD AO ab 2 1 ) 2 1 = 2 = 2 ( = = (其中 a、b 是菱形的两条对角线分别的长).即:“菱形的面积等于它的两条对角线长的积的一半”.还 要指出:当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积 S=底 ×高. 三、例题的意图分析 本节课安排了两个例题,例 1 是一道补充题,是为了巩固菱形的性质;例 2 是教材 P56 中的例 2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目, 除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、 灵活地运用知识. 四、课堂引入 1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么? 2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行 四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改 变平行四边形的边,使之一组邻边相等,从而引出菱形概念. 菱形定义:有一组邻边相等的平行四边形叫做菱形. 【强调】 菱形(1)是平行四边形;(2)一组邻边相等. 让学生举一些日常生活中所见到过的菱形的例子. 五、例习题分析 例 1 (补充) 已知:如图,四边形 ABCD 是菱形,F 是 AB 上一点,DF 交 AC 于 E. 求证:∠AFD=∠CBE. 证明:∵ 四边形 AB CD 是菱形, ∴ CB=CD, CA 平分∠BCD. ∴ ∠BCE=∠DCE.又 CE=CE, ∴ △BCE≌△COB(SAS). ∴ ∠CBE=∠CDE. ∵ 在菱形 ABCD 中,AB∥CD, ∴∠AFD=∠FDC ∴ ∠AFD =∠CBE. 例 2 (教材 P56 例 2)略 六、随堂练习 1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 . 2.已知菱形的两条对角线分别是 6cm 和 8cm ,求菱形的周长和面积.
免费下载网址ht: JIaoxue5uys68cm/ 3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1:2,求菱形 的对角线的长和面积 4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求B 证:∠AEF=∠AFE 七、课后练习 1.菱形ABCD中,∠D:∠A=3:1,菱形的周长为8cm,求菱形的高 2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC 的长度:(2)菱形ABCD的面积. 课后反思 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 3.已知菱形 ABCD 的周长为 20cm,且相邻两内角之比是 1∶2,求菱形 的对角线的长和面积. 4.已知:如图,菱形 AB CD 中,E、F 分别是 CB、CD 上的点,且 BE=DF.求 证:∠AEF=∠AFE. 七、课后练习 1.菱形 ABCD 中,∠D∶∠A=3∶1,菱形的周长为 8cm,求菱形的高. 2.如图,四边形 ABCD 是边长为 13cm 的菱形,其中对角线 BD 长 10cm,求(1)对角线 AC 的长度;(2)菱形 ABCD 的面积. 课后反思: