第二章矩阵及其运算 设A B 1-24 05 求3AB-2A及AB 解 3AB-2A=311-1-1-24-211-1 1-11人051 058 21322 30-56-211-1 2-1720 290 111Y12 058 AB=11-1-1-24=0-56 290 4.计算下列乘积: 1-2321;a22.32 57 21400-12 1-134月1-31 40-2 (5)(x1,x2,x3)a12a2a23x2;
1 第二章 矩阵及其运算 3.设 − = − 1 1 1 1 1 1 1 1 1 A , , 0 5 1 1 2 4 1 2 3 B = − − 求 3AB 2A A B. 及 T − 解 3AB − 2A − − − = − 0 5 1 1 2 4 1 2 3 1 1 1 1 1 1 1 1 1 3 − − − 1 1 1 1 1 1 1 1 1 2 = − 2 9 0 0 5 6 0 5 8 3 − − − 1 1 1 1 1 1 1 1 1 2 − − − − = 4 29 2 2 17 20 2 13 22 − − − = − 0 5 1 1 2 4 1 2 3 1 1 1 1 1 1 1 1 1 A B T = − 2 9 0 0 5 6 0 5 8 4.计算下列乘积: (1) − 1 2 7 5 7 0 1 2 3 4 3 1 ; (2) ( ) 1 2 3 1,2,3 ; (3) ( 1,2) 3 1 2 − ; (4) − − − − 4 0 2 1 3 1 0 1 2 1 3 1 1 1 3 4 2 1 4 0 ; (5) 3 2 1 13 23 33 12 22 23 11 12 13 1 2 3 ( , , ) x x x a a a a a a a a a x x x ;
0 0 6 0 2 2 0 3 0 解 4 7 3 X 2 Ix X 2 3 5 十 7 2 0 4 9 (2) 2 2 2 3 1) (一 2 2 2 (3 2 2 3 3 X 2 0 6 8 3 3 0 2 5 4 0 12a13x1 x3 12a22m 3 十 a12C1+a22X2+a23k3a13X1+a23x2+a3x3 xe1 十 2 2 2 x 2 0 0 0 2 2 0 0 0 3 3 0 5 A B 问 A B B 吗
2 (6) − − − 0 0 0 3 0 0 2 3 0 1 2 1 1 0 3 1 0 0 0 3 0 0 2 1 0 1 0 1 1 2 1 0 . 解 (1) − 1 2 7 5 7 0 1 2 3 4 3 1 + + + − + + + = 5 7 7 2 0 1 1 7 ( 2) 2 3 1 4 7 3 2 1 1 = 49 6 35 (2) ( ) 1 2 3 1 2 3 = (1 3 + 2 2 + 3 1) = (10) (3) ( 1 2) 3 1 2 − − − − = 3 ( 1) 3 2 1 ( 1) 1 2 2 ( 1) 2 2 − − − = 3 6 1 2 2 4 (4) − − − − 4 0 2 1 3 1 0 1 2 1 3 1 1 1 3 4 2 1 4 0 − − − = 20 5 6 6 7 8 (5) ( ) 3 2 1 13 23 33 12 22 23 11 12 13 1 2 3 x x x a a a a a a a a a x x x ( ) = a11 x1 + a12 x2 + a13 x3 a12 x1 + a22 x2 + a23 x3 a13 x1 + a23 x2 + a33 x3 3 2 1 x x x 12 1 2 13 1 3 23 2 3 2 33 3 2 22 2 2 = a11 x1 + a x + a x + 2a x x + 2a x x + 2a x x (6) − − − 0 0 0 3 0 0 2 3 0 1 2 1 1 0 3 1 0 0 0 3 0 0 2 1 0 1 0 1 1 2 1 0 − − − = 0 0 0 9 0 0 4 3 0 1 2 4 1 2 5 2 5.设 = 1 3 1 2 A , = 1 2 1 0 B ,问: (1) AB = BA 吗?
(2)(A+B)2=42+2AB+B2吗? (3)(4+B)(A-B)=A2-B2吗? 解 (1)A= B 12 则AB= B4= ∴AB≠BA 4 38 (2)(A+B)2 22Y22 814 25八25)(1429 38)(68 1016 但A2+2AB+B 故(4B2≠42+248+(812八+34八(1527 411 22Y02)(06 (3)(A+B)(A-B) 25人01)(09 而 411)(34 故 (A+B)(A-B)≠A2-B 6.举反列说明下列命题是错误的 (1)若A2=0,则A=0; 2)若A2=A,则A=0或A=E; (3)若AX=AY,且A≠0,则X=Y 解(1)取A 42=0,但A≠0 (2)取A A2=A,但A≠0且A≠E (3)取 00 AX=AY且A≠0但X≠Y 7.设A ,求A2,A3,…,A4 1 10Y10 10 解A 元1人元 22
3 (2) 2 2 2 (A+ B) = A + 2AB + B 吗? (3) 2 2 (A+ B)(A− B) = A − B 吗? 解 (1) = 1 3 1 2 A , = 1 2 1 0 B 则 = 4 6 3 4 AB = 3 8 1 2 BA AB BA (2) + = 2 5 2 2 2 5 2 2 ( ) 2 A B = 14 29 8 14 但 + + = 2 2 A 2AB B + + 3 4 1 0 8 12 6 8 4 11 3 8 = 15 27 10 16 故 2 2 2 (A+ B) A + 2AB + B (3) (A+ B)(A− B) = = 0 1 0 2 2 5 2 2 0 9 0 6 而 − = 2 2 A B = − 3 4 1 0 4 11 3 8 1 7 2 8 故 2 2 (A+ B)(A− B) A − B 6.举反列说明下列命题是错误的: (1)若 0 2 A = ,则 A = 0 ; (2)若 A = A 2 ,则 A = 0 或 A = E ; (3)若 AX = AY ,且 A 0 ,则 X = Y . 解 (1) 取 = 0 0 0 1 A 0 2 A = ,但 A 0 (2) 取 = 0 0 1 1 A A = A 2 ,但 A 0 且 A E (3) 取 = 0 0 1 0 A − = 1 1 1 1 X = 0 1 1 1 Y AX = AY 且 A 0 但 X Y 7.设 = 1 1 0 A ,求 k A ,A , ,A 2 3 . 解 = = 2 1 1 0 1 1 0 1 1 0 2 A
A 利用数学归纳法证明:=f101 21人x1)(3 k 当k=1时,显然成立假设k时成立,则k+1时 1010 A=AA= 1人x1)((k+1)λ1 由数学归纳法原理知:A 10 设A=0x1求 (00元 解首先观察 10元10 22元1 A2=0元 02 0x22 004人003)00x2 x3a23 A=A2.A=0x332 00元 ak kak-I k(k-1) 2 由此推测A4=02 kak- (k≥2) 用数学归纳法证明 当k=2时,显然成立 假设k时成立,则k+1时, =1/m(k-x2x10 2 k-1 021 00
4 = = = 3 1 1 0 1 1 0 2 1 1 0 3 2 A A A 利用数学归纳法证明: = 1 1 0 k A k 当 k = 1 时,显然成立,假设 k 时成立,则 k + 1 时 + = = = ( 1) 1 1 0 1 1 0 1 1 0 k k A A A k k 由数学归纳法原理知: = 1 1 0 k A k 8.设 = 0 0 0 1 1 0 A ,求 k A . 解 首先观察 = 0 0 0 1 1 0 0 0 0 1 1 0 2 A = 2 2 2 0 0 0 2 2 1 = = 3 3 2 3 2 3 2 0 0 0 3 3 3 A A A 由此推测 − = − − − k k k k k k k k k k k A 0 0 0 2 ( 1) 1 1 2 (k 2) 用数学归纳法证明: 当 k = 2 时,显然成立. 假设 k 时成立,则 k + 1 时, − = = − − − + 0 0 0 1 1 0 0 0 0 2 ( 1) 1 1 2 1 k k k k k k k k k k k k A A A
(k+1)241(+1)k k+1 (k+1)-1 1k(k-1) 2 由数学归纳法原理知:A4=02 00 9.设A,B为n阶矩阵,且A为对称矩阵,证明BAB也是对称矩阵 证明已知:AT=A Q (B AB)=B(BA)=BAB=BAB 从而B1AB也是对称矩阵 10.设A,B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是 AB= BA 证明由已知:A=AB=B 充分性:AB=BA→AB=B'A→AB=(AB) 即AB是对称矩阵 必要性:(AB)=AB→BA=AB→BA=AB 11.求下列矩阵的逆矩阵: 2)/cose sine cos0 (3)34-2|; 5-41 5200 120 2100 213 0083 121 0052 (6) (a1a2…an≠0) 解
5 + + + = + + − + − − 1 1 1 1 1 1 0 0 0 ( 1) 2 ( 1) ( 1) k k k k k k k k k k 由数学归纳法原理知: − = − − − k k k k k k k k k k k A 0 0 0 2 ( 1) 1 1 2 9.设 A,B 为 n 阶矩阵,且 A 为对称矩阵,证明 B AB T 也是对称矩阵. 证明 已知: A A T = 则 B AB B B A B A B B AB T T T T T T T T ( ) = ( ) = = 从而 B AB T 也是对称矩阵. 10.设 A,B 都是 n 阶对称矩阵,证明 AB 是对称矩阵的充分必要条件是 AB= BA. 证明 由已知: A A T = B B T = 充分性: AB= BA AB B A T T = AB (AB) T = 即 AB 是对称矩阵. 必要性: AB AB T ( ) = B A AB T T = BA= AB. 11.求下列矩阵的逆矩阵: (1) 2 5 1 2 ; (2) − sin cos cos sin ; (3) − − − 5 4 1 3 4 2 1 2 1 ; (4) 1 2 1 4 2 1 3 0 1 2 0 0 1 0 0 0 ; (5) 0 0 5 2 0 0 8 3 2 1 0 0 5 2 0 0 ; (6) an a a 0 0 2 1 ( 0) a1 a2an 解
(1)A= 25 41=5,A21=2×(-1),A12=2×(-1),42=1 AA 11 5-2 Au A 故A 2 (2)4=1≠0故A存在 Au= cos A2=sin 8 A12=-sin 8 A2= cos 从而 cos SIn n0 cose (3)4=2,故A存在 A21=2431=0 而 A 13 A2=6 22 210 故 167-1 1000 1200 (4)A 2130 1214 24A21=A31 A,,=24 42=12 33 84 44 6 10 120 A2=(-1)3230=-1213=(-1)4210=-12 120 00 A14=(-1)213=3 A23=(-1)2 0 12 12 100 00 A24=(-1)°213=-5A3=(-1)7120 2
6 (1) = 2 5 1 2 A A = 1 A11 = 5, A21 = 2 (−1), A12 = 2 (−1), A22 = 1 − − = = 2 1 5 2 12 22 11 21 A A A A A − = A A A 1 1 故 − − = − 2 1 5 2 1 A (2) A = 1 0 故 −1 A 存在 A11 = cos A21 = sin A12 = −sin A22 = cos 从而 − = − sin cos cos sin 1 A (3) A = 2 , 故 −1 A 存在 A11 = −4 A21 = 2 A31 = 0 而 A12 = −13 A22 = 6 A32 = −1 A13 = −32 A23 = 14 A33 = −2 故 − = A A A 1 1 − − − − − = 16 7 1 2 1 3 2 13 2 1 0 (4) = 1 2 1 4 2 1 3 0 1 2 0 0 1 0 0 0 A A = 24 A21 = A31 = A41 = A32 = A42 = A43 = 0 A11 = 24 A22 = 12 A33 = 8 A44 = 6 12 1 1 4 2 3 0 1 0 0 ( 1) 3 A12 = − = − 12 1 2 4 2 1 0 1 2 0 ( 1) 4 A13 = − = − 3 1 2 1 2 1 3 1 2 0 ( 1) 5 A14 = − = 4 1 2 4 2 1 0 1 0 0 ( 1) 5 A23 = − = − 5 1 2 1 2 1 3 1 0 0 ( 1) 6 A24 = − = − 2 1 2 1 1 2 0 1 0 0 ( 1) 7 A34 = − = −
A 22 故A 263 8 24124 (5)4=1≠0故A存在 而 0A4=0 412=-2A2=5432=0A12=0 A13=0A23=043=2A43=-3 A14=0A24=0434=-5A4=8 200 从而1|-25 00 002-3 00 58 (6)A 由对角矩阵的性质知A-1
7 − = A A A 1 1 故 − − − − − = − 4 1 12 1 24 5 8 1 0 3 1 6 1 2 1 0 0 2 1 2 1 1 0 0 0 1 A (5) A = 1 0 故 −1 A 存在 而 A11 = 1 A21 = −2 A31 = 0 A41 = 0 A12 = −2 A22 = 5 A32 = 0 A42 = 0 A13 = 0 A23 = 0 A33 = 2 A43 = −3 A14 = 0 A24 = 0 A34 = −5 A44 = 8 从而 − − − − = − 0 0 5 8 0 0 2 3 2 5 0 0 1 2 0 0 1 A (6) = an a a A 0 0 2 1 由对角矩阵的性质知 = − an a a A 0 1 1 0 1 2 1 1