结构力学 AL
第二章平面体系的机动分析 §2-1引言 四§2-2平面体系的计算自由度 §2-3几何不变体系的简单组成规则 §2-4瞬变体系 §2-5机动分析示例 四§2-6几何构造与静定性的关系
第二章 平面体系的机动分析 §2-1 引言 §2-2 平面体系的计算自由度 §2-3 几何不变体系的简单组成规则 §2-4 瞬变体系 §2-5 机动分析示例 §2-6 几何构造与静定性的关系
§2—1引 1.体系若千个杆件相互联结而组成的构造。 2.几何不变体系: 在任何荷载作用下,若不计杆件的变形, 其几何形状与位置均保持不变的体系。 返回
§2—1 引 言 1. 体系: 2. 几何不变体系: P 若干个杆件相互联结而组成的构造。 在任何荷载作用下,若不计杆件的变形, 其几何形状与位置均保持不变的体系。 返 回
3几何可变体系 即使不考虑材料的变形,在很小的荷载 作用下,会产生机械运动的体系。 返回
3.几何可变体系 即使不考虑材料的变形,在很小的荷载 作用下,会产生机械运动的体系。 返 回
4机动分析:判断体系是否几何 不变这一工作,又称作几何构造分析 (或几何组成分析)。 5刚片:在平面体系中将刚体称 为刚片。 可表示为: 返回
4.机动分析: 判断体系是否几何 不变这一工作 ,又 称作几何构造分析 ﹙或几何组成分析﹚。 5.刚片:在平面体系中将刚体称 为刚片。 可表示为: 返 回
§2-2平面体系的计算自由度 1.自由度 是指物体运动时可以独立变化的几何参数 的数目,即确定物体位置的独立坐标数目 (1)平面上的点有两个自由度 独立变化的几 何参数为:x、y X 返回
§2—2 平面体系的计算自由度 1. 自由度: 是指物体运动时可以独立变化的几何参数 的数目,即确定物体位置的独立坐标数目。 ⑴ 平面上的点有两个自由度 x y 独立变化的几 何参数为:x、y。 A x y o 返 回
(2)平面上的刚片有三个自由度 X 独立变化的几何参数为:x、y、φ 返回
⑵ 平面上的刚片有三个自由度 x y x y o 独立变化的几何参数为:x、y、。 A B 返 回
2约束 减少自由度的装置(又称为联系)。凡 是减少一个自由的装置称为一个约束。 3约束的种类 (1)链杆:一根链杆相当一个约束。 B 返回
2.约束: 减少自由度的装置(又称为联系)。 凡 是减少一个自由的装置称为一个约束。 3.约束的种类: ⑴ 链杆: 一根链杆相当一个约束。 x y B A x y o A x y o 2 1 B 返 回
(2)单铰:连结两个 刚片的铰称为单铰。 一个单铰相当于两个 y 约束。 (3)复铰:连结两个 以上刚片的铰称为复 中3 铰。连结n个刚片的 复铰相当于(n-1) 0 个单铰 返回
⑵ 单铰: ⑶复铰: Ⅰ Ⅱ x y A x y 1 2 o 连结n 个刚片的 复铰相 当于(n -1) 个单铰 一个单铰相当于两个 约束。 Ⅰ Ⅱ x y A x y 1 2 o Ⅲ 3 连结两个 刚片的铰称为单铰 。 连结两个 以上刚片的铰称为复 铰。 返 回
3.平面体系的计算自由度 个平面体系,通常由若干个刚片 彼此用铰并用链杆与基础相联而组成。 m—刚片数目 h-单铰数目 r链杆数目 W一计算自由度 W=3m-(2h+r)(21) 返回
3. 平面体系的计算自由度: m—刚片数目 h—单铰数目 r—链杆数目 W—计算自由度 w = 3m- (2h + r)(2—1) 一个平面体系 ,通常由若干个刚片 彼此用铰并用链杆与基础相联而组成。 返 回