
第三章矩阵的初等变换与线性方程组
第三章 矩阵的初等变换与线性方程组

3.1矩阵的初等变换3.2矩阵的秩3.3线性方程组的解
3.1 矩阵的初等变换 3.2 矩阵的秩 3.3 线性方程组的解

第一节矩阵的初等变换初等变换的概念矩阵之间的等价关系三初等变换与矩阵乘法的关系四初等变换的应用
第一节 矩阵的初等变换 一、初等变换的概念 二、矩阵之间的等价关系 三、初等变换与矩阵乘法的关系 四、初等变换的应用

知识点回顾:克拉默法则anx, +anx +..+anx, =ba21-i +a22x2 +..+a2nx, = b,设(1)anx +anx,+...+amx,=b结论1如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的.(P.24定理4)结论1如果线性方程组无解或有两个不同的解,则它的系数行列式必为零.(P.24定理4)用克拉默法则解线性方程组的两个条件:线性方程组的解受哪些因素(1)方程个数等于未知量个数;的影响?(2)系数行列式不等于零O
知识点回顾:克拉默法则 结论 1 如果线性方程组(1)的系数行列式不等于零,则该 线性方程组一定有解,而且解是唯一的.(P. 24定理4) 结论 1′如果线性方程组无解或有两个不同的解,则它的 系数行列式必为零. (P.24定理4') 设 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 (1) n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b + + + = + + + = + + + = 用克拉默法则解线性方程组的两个条件: (1) 方程个数等于未知量个数; (2) 系数行列式不等于零. 线性方程组的 解受哪些因素 的影响?

一、矩阵的初等变换引例:求解线性方程组2x, - X2- X + X =2,①2X+ X-2x+ x=4,4x -6x2 +2x,-2x =4,③3x +6x2-9x, +7x4 =9.4
引例:求解线性方程组 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 2, 2 4, 4 6 2 2 4, 3 6 9 7 9. x x x x x x x x x x x x x x x x − − + = + − + = − + − = + − + = ① ② ③ ④ 一、矩阵的初等变换

21- X2 - X+ X =2, + X-2x+ x =4,24x -6x, +2x, -2x =4, ?3x +6x2-9x +7x =9. ④???-2X+ X2-2x+ x =4, 2x- X- X+ X=2, ?
①②③④ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 4, 2 2, 2 3 2, 3 6 9 7 9. x x x x x x x x x x x x x x x x + − + = − − + = − + − = + − + = 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 2, 2 4, 4 6 2 2 4, 3 6 9 7 9. x x x x x x x x x x x x x x x x − − + = + − + = − + − = + − + = ① ② ③÷ 2 ①②③④

①X + x, -2x,+ x4 =4,2x, - X2 - X+ x =2,②2x -3x, + xg - x4 =2,?4[3x +6x2 -9x +7x4 =9.?-??-2x0④-3x①X+ X-2x+ X= 4,①
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 4, 2 2, 2 3 2, 3 6 9 7 9. x x x x x x x x x x x x x x x x + − + = − − + = − + − = + − + = ② - ③ ③ - 2×① 1 2 3 4 2 3 4 2 3 4 2 3 4 2 4, 2 2 2 0, 5 5 3 6, 3 3 4 3. x x x x x x x x x x xxx + − + = − + = − + − = − − + = − ④ - 3×① ①②③④①②③④

X + x2-2x,+ x = 4, ①2xz -2xg +2x = 0,(2-5x, + 5x -3x, = -6,343x2 -3x, +4x = -3.?-2+5×@①-3x?x+ X-2x,+ X=4,①
1 2 3 4 2 3 4 2 3 4 2 3 4 2 4, 2 2 2 0, 5 5 3 6, 3 3 4 3. x x x x x x x x x x xxx + − + = − + = − + − = − − + = − ② ÷ 2 ③ + 5×② 1 2 3 4 2 3 444 2 4, 0, 2 6, 3. x x x x x x xxx + − + = − + = = − = − ④ - 3×② ①②③④①②③④

x+ x, -2x,+ x4 = 4,X- X+ X= 0,232x, = -6,4X4 =-3.?0①-2x01X + X2-2x+ X = 4,②2-+=0
1 2 3 4 2 3 444 2 4, 0, 2 6, 3. x x x x x x xxx + − + = − + = = − = − ④ - 2×③ 1 2 3 4 2 3 44 2 4, 0, 3, 0 0. x x x x x x xx + − + = − + = = − = ③ ④ ①②③④①②③④

①x + X,-2x+ x = 4,X2- + x = 0,2x4 =-3,3恒等式0=0.4取x3为自由变量,则Xc+43c+3X2令x=c.则X=0X3C34
1 2 3 4 2 3 4 4 2 4, 0, 3, 0 0. x x x x x x x x + − + = − + = = − = 取 x3 为自由变量,则 1 3 2 3 4 4, 3, 3. x x x x x = + = + = − 令 x3 = c ,则 1 2 3 4 4 3 3 x c x c X x c x + + = = − 恒等式 1 4 1 3 . 1 0 0 3 c = + − ① ② ③ ④