
行列式第一节二阶与三阶行列式二阶行列式的引入二、三阶行列式三、小结思考题

HHHHHHHHHHHHHHHHHHHHHH一、一阶行列式的引入用消元法解二元线性方程组(1)aiixi +a12x, = b1,(a21xi + a22x, = b. (2)(1)× a22 :a1ia22xi +a12a22x2 = b,a22(2)×a12 :12a21x +a12a22x2 = b,a12'两式相减消去x,得页国下质
用消元法解二元线性方程组 + = + = . , 2 1 1 2 2 2 2 1 1 1 1 2 2 1 a x a x b a x a x b (1) (2) (1) : a22 , a11a22 x1 + a12a22 x2 = b1a22 (2) : a12 , a12a21x1 + a12a22 x2 = b2a12 两式相减消去 x2,得 一、二阶行列式的引入

HHHHHHHHHHHHHHHHHHHHHH(aiia22 - a12a21) x = b,a22 - a12b2;类似地,消去x,得(aiia22 -a12a21) , = aiib2 -b,a219当aα22-a12^21 ±0 时,方程组的解为b,a22 - aizb2a,b - b,a21(3)xi =X2 =(ira22 a12a21a11a22 - a12a21由方程组的四个系数确定上页发回下页
; (a11a22 − a12a21)x1 = b1a22 − a12b2 类似地,消去x1,得 , (a1 1a2 2 − a1 2a2 1)x2 = a1 1b2 − b1a2 1 当 a11a22 − a12a21 0时, 方程组的解为 , 11 22 12 21 1 22 12 2 1 a a a a b a a b x − − = . (3) 1 1 2 2 1 2 2 1 1 1 2 1 2 1 2 a a a a a b b a x − − = 由方程组的四个系数确定

HHHHHHHHHHHHHHHHHHHHHH定义由四个数排成二行二列(横排称行、竖排称列)的数表air ai2(4)21 a22表达式au^22-a12^2,称为数表(4)所确定的二阶an1a12行列式,并记作(5)a21a22anla12即D== aiia22 - a12l21:a21a22页回下页
由四个数排成二行二列(横排称行、竖排 称列)的数表 (4) 2 1 2 2 1 1 1 2 a a a a 定义 (5) 4 2 1 2 2 1 1 1 2 1 1 2 2 1 2 2 1 a a a a a a a a 行列式,并记作 表达式 − 称为数表( )所确定的二阶 即 . 11 22 12 21 21 22 11 12 a a a a a a a a D = = −

HHHHHHHHHHHHHHHHHHHHHHH对角线法则一阶行列式的计算a12主对角线= a11α22 — A12α21副对角线ai2221 +a12x2 = b1,aC1对于一元线性方程组a21xi+a22x2=b2Ta12d若记D三an)an2系数行列式顶国下质
11 a 12 a a12 a22 主对角线 副对角线 对角线法则 = a11a22 . − a12a21 二阶行列式的计算 若记 , 21 22 11 12 a a a a D = + = + = . , 2 1 1 2 2 2 2 1 1 1 1 2 2 1 a x a x b a x a x b 对于二元线性方程组 系数行列式

HHHHHHHHHHHHHHHHHHHHHHHaiix +ai2x2a21x + a22x, =b2a2D=a21a22顶国下质
+ = + = . , 2 1 1 2 2 2 2 1 1 1 1 2 2 1 a x a x b a x a x b , 21 22 11 12 a a a a D =

HHHHHHHHHHHHHHHHHHHHHHHbraiix + ai2x2b,一a21x +a22x2bia12D,=b2a22br,a11xi + a12x2中ba21Xi + a22x2一Pla2D=a21a22上页国下质
+ = + = . , 2 1 1 2 2 2 2 1 1 1 1 2 2 1 a x a x b a x a x b , 2 22 1 12 1 b a b a D = + = + = . , 2 1 1 2 2 2 2 1 1 1 1 2 2 1 a x a x b a x a x b , 21 22 11 12 a a a a D =

HHHHHHHHHHHHHHHHHHHHHHHbraiix + ai2x2a21xi + a22x2ba12D, =b2a22山a1rxi + ai2x2a21Xi + a22x2bian1D2 =b2a21正页国下质
+ = + = . , 2 1 1 2 2 2 2 1 1 1 1 2 2 1 a x a x b a x a x b , 2 22 1 12 1 b a b a D = + = + = . , 2 1 1 2 2 2 2 1 1 1 1 2 2 1 a x a x b a x a x b . 21 2 11 1 2 a b a b D =

HHHHHHHHHHHHHHHHHHHHHH则二元线性方程组的解为bia12b,a11b2Da22D2b,a21Xi=X2Dana12Dan1a12a21a22a21a22注意分母都为原方程组的系数行列式上页回下页
则二元线性方程组的解为 , 2 1 2 2 1 1 1 2 2 2 2 1 1 2 1 1 a a a a b a b a D D x = = 注意 分母都为原方程组的系数行列式. . 2 1 2 2 1 1 1 2 2 1 2 1 1 1 2 2 a a a a a b a b D D x = =

HHHHHHHHHHHHHHHHHHHHHHH例1求解二元线性方程组3x - 2x, = 12,2x + x, = 1.3-2解= 3-(-4) = 7± 0,D=2112-2312= -21,D == 14,D2 =21114D2-21D1-3.= 2, X2Xi=一D7D7上页下页返回
例 1 + = − = 2 1. 3 2 12, 1 2 1 2 x x x x 求解二元线性方程组 解 2 1 3 − 2 D = = 3 − ( − 4 ) = 7 0 , 1 1 12 2 1 − D = = 14 , 2 1 3 12 D 2 = = −21 , DD x 1 1 = 2 , 7 14 = = DD x 2 2 = 3. 7 21 = − − =