§4.1傅氏变换 傅氏积分和傅氏积分定理 周期(2)函数的傅氏级数 (1)三角式 ∑a n丌 x+ basin n x ncOS f(s)cos n丌 5ds n丌 b n i/e (2) sin d
x x p x d l n f l b l l n ò- = ( ) sin 1 §4.1傅氏变换 一、傅氏积分和傅氏积分定理 1. 周期(2l)函数的傅氏级数 (1) 三角式: 0 1 ¥ å n n n= a nπ nπ f(x) = + (a cos x + b sin x) 2 l l x x p x d l n f l a l l n ò - = ( ) cos 1
(2)复数式 f(x)=∑Cn ne Cn f(se inds 21 n丌 a n 1,0,1,2 △on=0n+1-0n=(跳跃)
ï ï î ï ï í ì = = - - ¥ = -¥ ò å x x w x w f e d l Cn f x Cne n n i l l n i x ( ) 2 1 ( ) (2) 复数式 (跳跃) , ..., 3, 2 , 1,0 ,1,2 ,... 1 l n l n n n n n p D w w w p w \ = - = = = - - - +
2.非周期函数的傅氏积分 周(2)°→非周 丌 此时A0n= 0,连续,On→>O f(x)=im∑ n= Im 2∑/=4 1→)n=- 2
2. 非周期函数的傅氏积分 周(2l) ¾l¾ ® ®¾¥ 非周 -1 ( ) lim n l i x n n f x c e w ®¥ ¥ = = å w w p Dwn = ¾l¾ ®®¾¥ n ® l 此时 0,连续, - - 0 1 [ ( ) ] 2 lim n n n i i x f e d e n w x w w x x w p ¥ ¥ ¥ D ® -¥ = D å ò - - 1 [ ( ) ] 2 lim n n l i i x l l n f e d e l w x w x x ¥ ®¥ =-¥ = å ò
即:/()2 f(se dse do 3.傅氏积分存在的条件 (1)满足狄氏条件(2)绝对可积 则 )傅氏积分,连续点处 f(x1+0)+f(x2-0)}x间断点
3. 傅氏积分存在的条件 (1)满足狄氏条件 (2)绝对可积 则 [ ] ï î ï í ì + + - = , 间断点 傅氏积分,连续点处 0 0 0 ( 0) ( 0) 2 ( ) 1 f x f x x f x x x w p wx w f x f d e d i x i ò ò e ¥ - ¥ ¥ - -¥ = [ ( ) ] 2 1 即: ( )
4.三维傅氏积分 f()=2d"d r=ix+1y+ kz 0=e101+e202+e303 dr-dxdyd2,do-dordo2do
4. 三维傅氏积分 ( ) òòò ò ò ò ¥ -¥ ¥ -¥ - × × = w p r v w v v v w v v v f r f r e dr e d i r i r [ ( ) ] 2 1 ( ) 3 dr = dxdydz , dw = dw1dw 2 dw 3 v w 1w1 2w2 3w3 e e e v v v v = + + r i x jy kz v v v = + +
二、傅氏变换 1定义 G(0)=∫f(x)e"=F[f(x 称为f(x)的傅氏变换 则 f(x)=o G(o)londo=F-G(a 2 称为G)的傅氏逆变换 显然 F-lFl(x)=f(x)
二、傅氏变换 1.定义 [ ] ò ¥ - ¥ - G ( ) = f ( x ) e dx = F f ( x ) i x 记 w w 称为f(x)的傅氏变换 则 [ ] ò ¥ -¥ - = ( ) = ( ) 2 1 ( ) 1 w w w p w f x G e d F G i x 记 称为G(w)的傅氏逆变换 [ ( )] ( ) 1 F F f x = f x 显然 -
3.三维傅氏变换 定义:G0)/Gcb 则:f() G(o)e do (2兀 4.傅氏变换的其它几种形式 G(o)=f(xDe dx f(x)=G(o )e odo
3.三维傅氏变换 定义: 则: w w p v v w v v v f r G e d i ×r -¥ òòò = ( ) (2 ) 1 ( ) 3 G f r e dr v v -i v ×r v v -¥ òòò = w (w) ( ) 4.傅氏变换的其它几种形式 ï ï î ï ï í ì = = ò ò ¥ -¥ - ¥ -¥ w w p w w w f x G e d G f x e dx i x i x ( ) ( ) ( ) 2 1 ( ) (1)
G(O)= ∫f( (x)e dx 2丌 (2) f(x) G(ae do 2丌 G(o) √2兀 f(xe dx (3) √2z G(oe do
ï ï î ï ï í ì = = ò ò ¥ -¥ - ¥ -¥ w w p p w w w f x G e d G f x e dx i x i x ( ) 2 1 ( ) ( ) 2 1 ( ) ï ï î ï ï í ì = = - ¥ -¥ ¥ -¥ ò ò w w p p w w w f x G e d G f x e dx i x i x ( ) 2 1 ( ) ( ) 2 1 ( ) (2) (3)
5.傅氏变换的物理意义 G(ω)为f(x)的频率密度函数或频谱函 数,它可用来反映各种频率谐波之间振幅的相 对大小,并称|G(o)为f(x)的频谱。因为o 是相对变化的,所以f(x)的频谱是连续谱。而 f(x)=G(o)eo do 可解释为无穷多个振幅(复振幅)为无限小 的,频率为连续的谐波的连续和
5.傅氏变换的物理意义 G(ω)为f(x)的频率密度函数或频谱函 数,它可用来反映各种频率谐波之间振幅的相 对大小,并称| G(ω)|为f(x)的频谱。因为ω 是相对变化的,所以f(x)的频谱是连续谱。而 w w p w f x G e d i x ò ¥ -¥ = ( ) 2 1 ( ) 可解释为无穷多个振幅(复振幅)为无限小 的,频率为连续的谐波的连续和
“在数学物理中一个方法的成功不是由于巧妙 的谋略,或幸运的偶遇,而是因为他表达着物理真理 的某个方面。” 0.G沙顿《数学的应用》1954
“在数学物理中一个方法的成功不是由于巧妙 的谋略,或幸运的偶遇,而是因为他表达着物理真理 的某个方面。 ” O.G.沙顿《数学的应用》1954