§2 Bessel函数的性质 母函数关系式 e27=∑J(x)"(*) 思路 ①设e27=∑C(x)则由展系数公式有 1,2,若 9 m dt=j,(x) 2兀1 则得证,但目前Jn(x)积分式不知
思路 ①设 则由展系数公式有 则得证,但目前 积分式 不知 §2 Bessel函数的性质 一、母函数关系式 1 ( - ) 2 - ( ) x t n t n n e J x t ¥ = ¥ = å (*) 1 ( - ) 2 - ( ) x t n t n n e C x t ¥ = ¥ = å 1 ( - ) 2 1 1 ( ) 2 x t t n n l n e C dt J x pi t + = = —ò 若 ( ) n J x
②用指数函数的展开式t=∑,|< 和绝对收敛级数可逐项相乘的性质证 证明:∵e2=∑ <∞即‖t<∞ m!、2t =点=∑1( (-1y 12)m0m!2t)m01m(2 令1-m=n,则l=m+n
②用指数函数的展开式 和绝对收敛级数可逐项相乘的性质证 0 , ! k z k z e z k ¥ = = å ç ÷ è ø è ø ( ) 1 - 2 - 2 2 - 0 0 0 0 1 1 (-1) - ! 2 ! 2 ! ! 2 x t t l m m l m x x t t l m l m l m xt x x e e e t l m t l m + ¥ ¥ ¥ ¥ = = = = æ ö æ ö æ ö = × = å ç ÷ × = å ç ÷ å å ç ÷ è ø è ø è ø 证明:∵ ∴ 令 l - m n = ,则 l = + m n
于是∑→ → =0m+n=0 =S y(x *米 2m"t"=∑J(x) n=0m0(m+m)!n!2 sin 0 问:①Jn(x)= 1 rin+ ul= ie de 兀l 1=1,(+)0 x)=ne(mud或 J, (x)=o cos(xsin 0-ne)de 丌
于是 l 0 m n 0 n - - m n ¥ ¥ ¥ ¥ = + = = = ¥ å ® å ® ® å å ∴ ( ) 1 - 2 - 0 - (-1) 2 ( ) ( )! ! 2 x t t m m n n n n n m n x e t J x t m n n ¥ ¥ ¥ + = ¥ = = ¥ = = å å å + (**) 问:① ( ) 1 - sin 2 1 1 ( 1) 1 1 ( ) 2 2 x t ix t i n i n n t e e J x dt ie d i t i e q q q q p p + = + = = — — ò ò l ∴ 1 ( sin - ) ( ) 2 i x n n J x e d p q q p q p = ò- 或 0 1 ( ) cos( sin - ) n J x x n d p q q q p = ò
问:②Jn(x)的微分式? 答:无,∵L展系无微分式 可:③J(x)V≠n)有母函关系吗? 答:无
问:② J x n ( ) 的微分式? 答:无,∵ 展系无微分式 问:③ 有母函关系吗? 答:无 J ( x n )( ) n n ¹ L
递推公式 1.[d J(x)=xv(x) d x1(x)1=xy1(x) (2) dx 思路: ①用母函关系证: 答:M!∵只适于v=n ②用积分式证? Mo!:它来源于母函,=n ③用级数表示证?
二、递推公式 1. -1 - - 1 ( ) ( ) (1) ( ) - ( ) (2) d x J x x J x dx d x J x x J x dx n n n n n n n n + ì é ù = ï ë û ï í ï é ù = ï ë û î 思路: ①用母函关系证: 答:No!∵ 只适于 ②用积分式证? No!∵ 它来源于母函,. ③用级数表示证? n = n n = n
[分析]:欲证(2),即要证 k+V+1 左边=X2 k!I(v+k+2)(2 证明]:x( J,()=(1y 2k+v k=ok! r(v+k+1)(2 2k+v dx k=ok! r(v+k+1)(2 =∑(-1)·2k(124 k=1k!r(v+k+1)(2
[分析]:欲证(2),即要证 左边 [证明]: 2 1 - 0 (-1) - ! ( 2) 2 k k k x x k k n n n + + ¥ = æ ö = å ç ÷ G + + è ø - ( ) d x J x dx n n é ù ë û 2 0 (-1) ( ) ! ( 1) 2 k k k x J x k k n n n + ¥ = æ ö = å ç ÷ G + + è ø ∵ 2 2 0 (-1) 1 ! ( 1) 2 k k k k d x dx k k n n + ¥ = æ ö = å ç ÷ G + + è ø 2 2 -1 1 (-1) 2 1 ! ( 1) 2 k k k k k x k k n n + ¥ = × æ ö = å ç ÷ G + + è ø
2k+v-1 (k-1)r(+k+1)2 令k-1=1 (-1) 2l+v+1 V x 2lr(v+1+2)2 J+1(x) 应用: ①为派生出其他递推公式 由(1)→xJ(x)+vx1J,(x)=xJ(x)(1)
2 -1 - 0 (-1) ( -1)! ( 1) 2 k k k x x k k n n n + ¥ = æ ö = × å ç ÷ G + + è ø 令 k -1=l 1 2 1 - 0 (-1) ! ( 2) 2 l l l x x l l n n n + + + ¥ = æ ö = × å ç ÷ G + + è ø - 1 -x J x( ) n = n + 应用: ①为派生出其他递推公式 由(1)→ 1 -1 -1 x J ( x) x J ( x) x J x( ) (1) n n n n n n + = n ¢
1)·x:xJ,(x)+vJ(x)=x-(x)(3) 由(2)→x"(x)-vxJ(x)=-xJ1(x)(2) (2) x,(x)-v,(x)=-x+(x)(4 (3)+(4):2J(x)=J(x)-J1(x)(5) (3)-(4) J(x)=J1(x)+J(x)(6) ②只要查J(x)和J1(x)表可计算出任一J(x)
-1 ( ) ( ) ( ) v xJ x J x xJ x n n ¢ + = n (3) 由(2)→ - 1 - -1 - 1 x J (x) - x J (x) -x J x( ) (2) n n n n n n n + = ¢ -1 1 (2) : x n ¢ × 1 ( ) - ( ) - ( ) (4) v xJ x J x xJ x n n n + ¢ = (3)+(4): -1 1 2 ( ) ( ) - ( ) (5) v J x J x J x n n + ¢ = (3)-(4): -1 1 2 J (x) J (x) J x( ) (6) x n n n n = + + ②只要查 J x 0 ( ) 和 J x 1 ( ) 表可计算出任一 J x( ) n g 1 1 (1) : v x - ¢ ×
由(3):知(x)和J(x)可出J(x) 知,由J(x) Ji(x)f 少(x) 由(4):知J(x)和J(x) 可算出 V+1 如,由J(x) 仿此继续下去→J(x) 注:当v=n时亦可用母函数法推得上述递推公式
由(3):知 -1 J x( ) n 和 ( ) ( ) v J x J x n ¾可算出 ¾¾® ¢ 知,由 0 1 1 ( ) ( ) ( ) J x J x J x ü ý ® ¢ þ 由(4):知 J x( ) n 和 1 J (x) J x( ) n n + ¢ ¾可¾算出¾® 如,由 1 2 1 ( ) ( ) ( ) J x J x J x ü ý ® ¢ þ 仿此继续下去→ J x( ) n 注:当 n = n 时亦可用母函数法推得上述递推公式
③用来计算J(x)含的积分: eg1: oxO(xdx rox'xJo(xdx=Jox[3,(x)dx xJ1(x)o-o J,(xdx =a(a)-26x21(x)x aJ(a)-2ra d x2/2(x)x =a3J(a)-2a2J2(a)
③用来计算 含的积分: [ ] 3 0 0 (1) 2 2 0 0 0 1 3 2 1 0 1 0 3 2 1 1 0 (1) 3 2 1 2 0 3 2 1 2 ( ) ( ) ( ) ( ) - ( ) ( ) - 2 ( ) ( )-2 1 ( ) ( ) - 2 ( : ) a a a a a a a x J x dx d x xJ x dx x xJ x dx dx x J x xJ x dx a J a x J x dx d a J a x J x dx dx a J a a e a g J ò = = ò ò = ò = ò = é ù ò ë û = J x( ) n