免费下载网址ht:jiaoxue5u.ys]168.com 角的平分线的性质 教学目标 1、角的平分线的性质 2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上” 3.能应用这两个性质解决一些简单的实际问题. 教学重点 角平分线的性质及其应用. 教学难点 灵活应用两个性质解决问题. 教学过程 I.创设情境,引入新课 拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再 把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么? 分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条 折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对 Ⅱ.导入新课 角平分线的性质即已知角的平分线,能推出什么样的结论 折出如图所示的折痕PD、PE 画一画: 按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长? 投影出下面两个图形,让学生评一评,以达明确概念的目的. 解压密码联系qq11913986加微信公众号 Jlaoxuewuyou九折优惠l淘宝网 址 JIaoxuesu. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com 角的平分线的性质 教学目标 1、 角的平分线的性质 2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”. 3.能应用这两个性质解决一些简单的实际问题. 教学重点 角平分线的性质及其应用. 教学难点 灵活应用两个性质解决问题. 教学过程 Ⅰ.创设情境,引入新课 拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在 一起,再 把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么? 分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条 折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对. Ⅱ.导入新课 角平分线的性质即已知角的平分线,能推出什么样的结论. 折出如图所示的折痕 PD、PE. 画一画: 按照折纸的顺序画出一个角的三条折痕,并度量所画 PD、PE 是否等长? 投影出下面两个图形,让学生评一评,以达明确概念的目的.
免费下载网址http://jiaoxue5u.ys168.com/ 生乙 结论:同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不 是过角平分线上一点作两边的垂线段,所以他的画法不符合要求 问题1:如何用文字语言叙述所画图形的性质吗? [生]角平分线上的点到角的两边的距离相等 问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下 由已知事项 图形 已知事项 推出的事项 C 已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足 由已知事项推出的事项:PD=PE 于是我们得角的平分线的性质 在角的平分线上的点到角的两边的距离相等. [师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影) 问题3:根据下表中的图形和己知事项,猜想由已知事项可推出的事项,并用符号语言 填写下表: 解压密码联系qq11913986加微信公众号 Jlaoxuewuyou九折优惠l淘宝网 址 JIaoxuesu. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com 结论:同学乙的画法是正确的.同学甲画的是过角平分线上一 点画角平分线的垂线,而不 是过角平分线上一点作两边的垂线段,所以他的画法不符合要求. 问题 1:如何用文字语言叙述所画图形的性质吗? [生]角平分线上的点到角的两边的距离相等. 问题 2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下 表: 已知事项:OC 平分∠AOB,PD⊥OA,PE⊥OB,D、E 为垂足. 由已知事项推出的事项:PD=PE. 于是我们得角的平分线的性质: 在角的平分线上的点到角的两边的距离相等. [师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影) 问题 3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言 填写下表:
免费下载网址http://jiaoxue5u.ys168.com/ 由已知事 图形 已知事项项推出的 事项 PD⊥OB PE⊥OA, 垂足为 PD= PE [生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PD0(Ⅲ).于是可得 ∠PDE=∠POD 由已知推出的事项:点P在∠AOB的平分线上 由此我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.这两个性质有 什么联系吗? 分析:这两个性质已知条件和所推出的结论可以互换 思考: 如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交 叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000? S 1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题? 2.比例尺为1:2000是什么意思? 结论: 1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要 求离角的顶点500米处 2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及 个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm表示实际距离 200m的意思.作图如下 解压密码联系qq11913986加微信公众号 Jlaoxuewuyou九折优惠l淘宝网 址 JIaoxuesu. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com [生讨论]已知事项符合直角三角形全等的条件,所以 Rt△PEO≌△PDO(HL).于是可得 ∠PDE=∠POD. 由已知推出的事项:点 P 在∠AOB 的平分线上. 由此我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.这两个性质有 什么联系吗? 分析:这两个性质已知条件和所推出的结论可以互换. 思考: 如图所示,要在 S 区建一个集贸市场,使它到公路、铁路距离相等, 离公路与铁路交 叉处 500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为 1:20000)? 1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题? 2.比例尺为 1:20000 是什么意思? 结论: 1.应该是用第二个性质. 这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要 求离角的顶点 500 米处. 2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位, 这就涉及一 个单位换算问题了.1m=100cm,所以比例尺为 1:20000,其实就是图中 1cm•表示实际距离 200m 的意思.作图如下:
免费下载网址http://jiaoxue5u.ys168.com/ P 第一步:尺规作图法作出∠AOB的平分线OP. 第二步:在射线OP上截取0C=2.5cm,确定C点,C点就是集贸市场所建地了 总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若 遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题 III例题与练习 例如图,△ABC的角平分线酬M、CN相交于点P. 求证:点P到三边AB、BC、CA的距离相等 分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要 证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,根据角平分线性质和等式的传递性 可以解决这个问题. 证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F 因为BM是△ABC的角平分线,点P在BM上 所以PD=PE 同理PE=PF. 所以PD=PE=PF 即点P到三边AB、BC、CA的距离相等 练习: 1.课本练习 解压密码联系qq11913986加微信公众号 Jlaoxuewuyou九折优惠l淘宝网 址 JIaoxuesu. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com 第一步:尺规作图法作出∠AOB 的平分线 OP. 第二步:在射线 OP 上截取 OC=2.5cm,确定 C 点,C 点就是集贸市场所建地了. 总结:应用角平分线的性质,就可以省去证明三角形全等的步骤, 使问题简单化.所以若 遇到有关角平分线,又要证线段相等的问题, 我们可以直接利用性质解决问题. III 例题与练习 例 如图,△ABC 的角平分线 BM、CN 相交于点 P. 求证:点 P 到三边 AB、BC、CA 的距离相等. 分析:点 P 到 AB、BC、CA 的垂线段 PD、PE、PF 的长就是 P 点到三边的距离, 也就是说要 证:PD=PE=PF.而 BM、CN 分别是∠B、∠C 的平分线, 根据角平分线性质和等式的传递性 可以解决这个问题. 证明:过点 P 作 PD⊥AB,PE⊥BC,PF⊥AC,垂足为 D、E、F. 因为 BM 是△ABC 的角平分线,点 P 在 BM 上. 所以 PD=PE. 同理 PE=PF. 所以 PD=PE=PF. 即点 P 到三边 AB、BC、CA 的距离相等. 练习: 1.课本练习.
免费下载网址http://jiaoxue5u.ys168.com/ 2.课本习题 强调:条件充足的时候应该直接利用角平分线的性质,无须再证三角形全等. IV.课时小结 今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;② 到角的两边距离相等的点在角的平分线上.它们具有互逆性,随着学习的深入,解决问题越 来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分 线的性质,而不必再去证明三角形全等而得出线段相等 V.课后作业 1、课本习题 解压密码联系qq11913986加微信公众号 Jlaoxuewuyou九折优惠l淘宝网 址 JIaoxuesu. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com 2.课本习题 强调:条件充足的时候应该直接利用角平分线的性质,无须再证三角形全等. IV.课时小结 今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;② 到角的两边距离相等的点在角的平分线上.它们具有互逆性,随着学习的深入,解决问题越 来越简便了.像与角平 分线有关的求证线段相等、角相等问题,我们可以直接利用角平分 线的性质,而不必再去证明三角形全等而得出线段相等. Ⅴ.课后作业 1、课本习题