行政职业能力倾向 测试 Administrative Aptitude Test(AAT)
行政职业能力倾向 测试 Administrative Aptitude Test(AAT)
行政职业能力倾向测验的内容结构 序号内容 测试目标 数量关系(15) 基本数量关系的快速理解和 计算能力 言语理解与表达(30)对文字材料的理解、分析与 运用的能力 判断推理(40) 对图形、词语概念、事件关 系和文字材料的认知理解、 比较、组合、演绎、综合判 断等能力 四常识判断 对社会生活等常识性问题的 推理和判断能力 五资料分析(15) 较简单图、表、文字资料的 阅读、理解、分析能力
行政职业能力倾向测验的内容结构 序号 一 二 三 四 五 内容 数量关系(15) 言语理解与表达(30) 判断推理(40) 常识判断 资料分析(15) 测试 目标 基本数量关系的快速理解和 计算能力 对文字材料的理解、分析与 运用的能力 对图形、词语概念、事件关 系和文字材料的认知理解、 比较、组合、演绎、综合判 断等能力 对社会生活等常识性问题的 推理和判断能力 较简单图、表、文字资料的 阅读、理解、分析能力
数量关系测验 它主要考察的是应试者对解决算术问题的能力, 考生可在草稿纸上运算;题中涉及的数学知识 或原理都不超过初中水平,甚至多数是小学水 平,以此为媒介,测查考生对数量关系的理解 深度和反应速度。 当遇到比较难的问题时,可以先跳过去,待其 它较易的题做完后有时间再返回来答这一题。 主要有两种类型的题目:数字推理和数字运算
数量关系测验 它主要考察的是应试者对解决算术问题的能力, 考生可在草稿纸上运算;题中涉及的数学知识 或原理都不超过初中水平,甚至多数是小学水 平,以此为媒介,测查考生对数量关系的理解 深度和反应速度。 当遇到比较难的问题时,可以先跳过去,待其 它较易的题做完后有时间再返回来答这一题。 主要有两种类型的题目:数字推理和数字运算
题型一:数字推理 在这种题型中,每道试题中呈现一个按某种规律排列的数列, 但这数列中有意地空缺了一项,要求考生仔细观察这一数列, 找出数列的排列规律,从而根据规律推导出空缺项应填的数 字,然后在供选择的答案中找出应填的一项。 (一)基础数列 常数数列:由一个固定的常数构成的数列叫做常数数列。 如3,3,3,3,3,3,3, 2、等差数列:相邻两项之差(后项减去前项)等于定值的数 列叫做等差数列。如3,5,7,9,11,13, 3、等比数列:相邻两项之比(后项除以前项)等于定值的数 列叫做等比数列。如3,6,12,24,48,96
题型一:数字推理 在这种题型中,每道试题中呈现一个按某种规律排列的数列, 但这数列中有意地空缺了一项,要求考生仔细观察这一数列, 找出数列的排列规律,从而根据规律推导出空缺项应填的数 字,然后在供选择的答案中找出应填的一项。 (一)基础数列 1、常数数列:由一个固定的常数构成的数列叫做常数数列。 如3,3,3,3,3,3,3,… … 2、等差数列:相邻两项之差(后项减去前项)等于定值的数 列叫做等差数列。如3,5,7,9,11,13,… … 3、等比数列:相邻两项之比(后项除以前项)等于定值的数 列叫做等比数列。如3,6,12,24,48,96,… …
(一)基础数列 4、质数型数列:由质数构成的数列。(只有1和它本身两个 约数的自然数叫做质数)如2,3,5,7,11,17, 合数数列:由合数构成的数列。(除了1和它本身之外还有其 他约数的自然数叫做合数。注意:1即不是质数,也不是合数) 如4,6,8,9,10,12, 5、周期数列:自某一项开始重复出现前面相同(相似)项的 数列叫做周期数列。如1,3,7,1,3,7,∴或1,3,7, 1,-3,-7 6、简单递推数列:数列当中每一项等于前两项的和、差、积 或商。如1,1,2,3,5,8,13, ●●。 或37,23,14,9,5, 4,1,,或2,3,6,18,108,1944,……或256,32, 8,4,2,2,1
(一)基础数列 4、质数型数列:由质数构成的数列。(只有1和它本身两个 约数的自然数叫做质数)如2,3,5,7,11,17,… … 合数数列:由合数构成的数列。(除了1和它本身之外还有其 他约数的自然数叫做合数。注意:1即不是质数,也不是合数) 如4,6,8,9,10,12,… … 5、周期数列:自某一项开始重复出现前面相同(相似)项的 数列叫做周期数列。如1,3,7,1,3,7, … …或1,3,7, -1,-3,-7,… … 6、简单递推数列:数列当中每一项等于前两项的和、差、积 或商。如1,1,2,3,5,8,13, … …或37,23,14,9,5, 4,1, … …或2,3,6,18,108,1944,… …或256,32, 8,4,2,2,1,2,… …
(一)基础数列 7、幂次数列:A,B1,C2,D,E4,F的结果加上或者减 去特定的数后呈规律存在,则该数列为幂次数列 如1,4,9,16,25,36, ●●。 或者1,8,27,64,125,216, ●● 或者1,2,9,64,625
(一)基础数列 7、幂次数列:A0 ,B1 ,C2 ,D3 ,E4 ,F 5的结果加上或者减 去特定的数后呈规律存在,则该数列为幂次数列。 如1,4,9,16,25,36,… … 或者1,8,27,64,125,216,… … 或者1,2,9,64,625,… …
(二)做差法 即将数列中的数字按照顺序两两做差的方法。 用途: 1、发现二级等差数列,三级等差数列; 发现和数列 3、发现基础规律。如做差后发现等比数列、质数数列、周期 数列、平方数列、立方数列等。 提示:做差法是数字推理中最基本的方法,当数字变换平缓, 数列中数字的数量适中时不妨首先做差,来看看有什么规律
(二)做差法 即将数列中的数字按照顺序两两做差的方法。 用途: 1、发现二级等差数列,三级等差数列; 2、发现和数列; 3、发现基础规律。如做差后发现等比数列、质数数列、周期 数列、平方数列、立方数列等。 提示:做差法是数字推理中最基本的方法,当数字变换平缓, 数列中数字的数量适中时不妨首先做差,来看看有什么规律
做差法的应用 1、-2,0,1,1,()(2007年广东真题) A、1 B、0 C、-1D、-2 2、1,1,-1,-5,()(2005年广东真题) A、-1B、-5 11l 3、3,3,-3,-15,()(2005年广东真题) A、-3B、-15 C、-33 D、-39
做差法的应用 1、-2,0,1,1,( )(2007年广东真题) A、1 B、0 C、-1 D、-2 2、1,1,-1 ,-5,( )(2005年广东真题) A、-1 B、-5 C、-9 D、-11 3、3,3,-3,-15,( )(2005年广东真题) A、-3 B、-15 C、-33 D、-39
(三)做除法 即将数列中的数字按照顺序两两相除的方法。 用途: 1、发现等比数列,积数列,积数列变形; 2、发现基础规律。如做除后发现等差数列、质数数列、周期 数列等。 提示:当数列变化较大,数字大小适中时,要考虑做除法
(三)做除法 即将数列中的数字按照顺序两两相除的方法。 用途: 1、发现等比数列,积数列,积数列变形; 2、发现基础规律。如做除后发现等差数列、质数数列、周期 数列等。 提示:当数列变化较大,数字大小适中时,要考虑做除法
(四)分组法 即将数列中的数字进行分组以发现规律的方法。 常用的方式 1、隔项分组:将数列按照奇偶隔项分为两组;如2,4,5,8, 8,16。 2、两两分组:将数列两两相邻数字分为一组。如1,3,5, 15,4,12 3、三三分组:将三三相邻数字分为一组,如1,2,4,2,4, 8,3,6,12。 分子分母分组:将分子和分母分别分组。如1/2,2/4,3/8, 5/16。 用途:解决多重数列和分数数列
(四)分组法 即将数列中的数字进行分组以发现规律的方法。 常用的方式: 1、隔项分组:将数列按照奇偶隔项分为两组;如2,4,5,8, 8,16。 2、两两分组:将数列两两相邻数字分为一组。如1,3,5, 15,4,12。 3、三三分组:将三三相邻数字分为一组,如1,2,4,2,4, 8,3,6,12。 4、分子分母分组:将分子和分母分别分组。如1/2,2/4,3/8, 5/16。 用途:解决多重数列和分数数列