当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

《数学物理方法》课程教学资源(PPT课件)Greens Function

资源类别:文库,文档格式:PPT,文档页数:16,文件大小:180.5KB,团购合买
Method of Green’s functions General concepts of Green’s function Fundamental solution Green’s function of the evolutionproblems Fundamental solutions of the evolutionproblems
点击下载完整版文档(PPT)

Methods of Mathematical Physics Green functions

Methods of Mathematical Physics Green Functions

Method of green's functions a General concepts of Green's function ■ Fundamental solution Green's function of the evolution problems a Fundamental solutions of the evolution problems a Green's function of the evolution problems Conclusion of the charpter

Method of Green’s functions ◼ General concepts of Green’s function ◼ Fundamental solution ◼ Green’s function of the evolution problems ◼ Fundamental solutions of the evolution problems ◼ Green’s function of the evolution problems ◼ Conclusion of the charpter

General Concepts of Green's function ■ Concept Definition: o The field comes from a point resource a Example: △G=8(r-r),G|r=0 (ot-a2A)G=8(r-r)8(t-t), Glr=Glt=0=0 General Form LG(x)=δ(x-×1) ● gounda= Initial=0

General Concepts of Green’s Function ◼ Concept ◼ Definition: • The field comes from a point resource ◼ Example : • △ G = (r-r’),G|=0 • (t – a 2△) G = (r-r’)(t-t’), G|= G|t=0=0 ◼ General Form • L G(xi) = (xi-xi ’) • G|boundary= G|initial=0

General Concepts of Green's function Classification a According to the universal equation Green' s function of the steady problem L=A Green's function of the heat problem L =(0 -a2A Green's function of the wave problem L =(Ot-a2A) a According to the boundary condition: The green's function for a unboundary space, namely, the fundamental solution The Green's function for a homogeneous bounding condition

General Concepts of Green’s Function ◼ Classification: ◼ According to the universal equation: • Green’s function of the steady problem L = △ • Green’s function of the heat problem L = (t – a2△) • Green’s function of the wave problem L = (tt – a2△) ◼ According to the boundary condition: • The Green’s function for a unboundary space, namely, the fundamental solution. • The Green’s function for a homogeneous bounding condition

General Concepts of Green's function Steady Heat problems Wave problems Green's problems(a-a2△)G(at-a2△)G function△G =8(r-r)6(tt)|=6(r-r)6(tt 6(r-r) G|t=0=0 G|t=0=0 Gt|t=0=0 Unboundin g space Boundary condition G|r=0

General Concepts of Green’s Function Green’s function Steady problems △ G = (r-r’) Heat problems (t – a2△) G = (r-r’)(t-t’) G|t=0=0 Wave problems (tt – a2△) G = (r-r’)(t-t’) G|t=0=0 Gt|t=0=0 Unboundin g space Boundary condition G|= 0

General Concepts of Green's function ■ Properties: a Let the equation is L u(x=f(x) a The eq. of Green's fn. is L G(x)=8(x-X) a Under the same conditions Since:f()=∫f(x)δ(x×)dx Therefore: u(x= f(X,)G(x-X)dx Applications range: nonhomogeneous universal eqs Homogeneous condition procedure find the correspondding green's fn then integra

General Concepts of Green’s Function ◼ Properties: ◼ Let the equation is L u(x) = f (x) ◼ The eq. of Green’s fn. is L G(x) = (x-x’) ◼ Under the same conditions ◼ Since: f (x)=∫ f (x’) (x-x’) dx’ ◼ Therefore: u (x) =∫ f (x’) G(x-x’) dx’ ◼ Applications ◼ range: • nonhomogeneous universal eqs. • Homogeneous condition ◼ procedure: • find the correspondding Green’s fn, then integral

Fundamental solutions for the steady problems Fundamental Solutions for the steady problems can be obtained from the electric field Problem Green's field △V Eq Au=f() AG=S(-F') q6(7-P)/E0 f(r)dr Sol G 4x|r- 4 r-r 40 r-r

Fundamental Solutions for the steady problems Problem Green’s field Eq. Sol. u f (r)   = G (r r')    =  − 0 q (r r')/ V   − −  = 4 | '| 0 r r q V   − = 4 | '|  1 r r G   − − =   − − = 4 | '| ( ') ' r r f r d u      Fundamental Solutions for the steady problems can be obtained from the electric field

Green's Functions for the steady problems a Basic procedure △a=f(r) problem ul==0 Green's fn △G= IGI2=0 Relation f()=f()o(")dr )=fG7)G(77)d

Green’s Functions for the steady problems problem    =  = |  0 ( ) u u f r  Green’s fn.    =  = − |  0 ( ') G G r r    Relation   = = − ( ) ( ') ( , ') ' ( ) ( ') ( ') '    u r f r G r r d f r f r r r d         ◼ Basic procedure

Green's Functions for the steady problems ■求解方法 稳定问题的格林函数也可以利用静电场类比法得到 点源问题可以看成接地的导体边界内在r处有 个电量为-:0的点电荷 边界内部的电场由点电荷与导体中的感应电荷共同 生 在一些情况下,导体中所有感应电荷的作用可以用 个设想的等效电荷来代替,该等效电荷称为点电 荷的电像 这种方法称为电像法

Green’s Functions for the steady problems ◼ 求解方法 • 稳定问题的格林函数也可以利用静电场类比法得到。 • 点源问题可以看成接地的导体边界内在 r’ 处有一 个电量为 - 0 的点电荷。 • 边界内部的电场由点电荷与导体中的感应电荷共同 产生。 • 在一些情况下,导体中所有感应电荷的作用可以用 一个设想的等效电荷来代替,该等效电荷称为点电 荷的电像。 • 这种方法称为电像法

Green's Functions for the steady problems ■ Example 在半空间内求解稳定问题的格林函数 解:根据题目,定解问题为 △G=d(x-x)(y-y3)6(二-21)2z>0 0 这相当于在接地导体平面上方点M(x2,y2z)处放 置一个电量为-so的点电荷,求电势。 设想在M的对称点N(xy2,-z)处放置一个电量为 +Eo的点电荷,容易看出在平面z=0上电势为零, 这表明在N点的点电荷就是电像

Green’s Functions for the steady problems ◼ Example 在半空间内求解稳定问题的格林函数    =  = − − −  | = 0 ( ') ( ') ( '), 0 G z 0 G  x x  y y  z z z 解:根据题目,定解问题为 这相当于在接地导体平面上方点 M(x’,y’,z’) 处放 置一个电量为 - 0 的点电荷,求电势。 设想在M的对称点 N (x’,y’ ,-z’)处放置一个电量为 + 0 的点电荷,容易看出在平面 z=0上电势为零, 这表明在N点的点电荷就是电像

点击下载完整版文档(PPT)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共16页,试读已结束,阅读完整版请下载
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有