免费下载网址http://jiaoxue5u.ys168.com/ 折叠中的直角三角形 知识目标:通过复习过程,使学生进一步理解折叠问题的本质是图形的轴对称变换,会利用轴 对称变换的性质进行有关的计算和证明。培养学生运用知识的能力。 教学目标能力目标:能运用转化的数学思想方法解决问题,提高解题的灵活性,并学会归纳总结解题方 情感目标:通过学生动手操作,激发学生学习的兴趣,培养学生的自主学习的能力,让学生主动 参与到学习探索的过程中来,加强其进一步学习的自信心 教学重点通过动手操作,应用轴对称性解决折叠问题 教学难点学生通过折叠自己进行解题过程较难,思维不易发散 设计亮点 学过程 巧设情境,设疑引入 通过对特殊三角形一章的学习我们对直角三角形已经有了一定的认识和了解。今天我 们继续探讨和直角三角形有关的折叠问题 【动动手,动动脑】:如图操作,折叠直角三角形纸片, 使点C落在AB上的点E处 (1)你能找出其中全等的三角形吗?△ADC≌△ADE (2)图中有哪些有相等的角和相等的线段? (3)图中的对称轴是哪条线段所在的直线 从操作中不难看出,折叠操作“折”是过程 C “叠”是结果。但是,折叠问题不能只靠动手操作 来解决,我们必须透过现象看本质.那么折叠的本质又是什么呢? 学生归纳:折叠问题的实质是图形的轴对称变换。利用轴对称变换得到对应的角相等 和对应的线段相等 运用性质,归类探究 【归类一】:求角的度数 例1:如图,折叠直角三角形纸片,使点C落在AB上的点E处.已知∠B=30 ∠C=90°,则∠BAD= ∠ADE 解:(教师板书解答过程) 点评:利用折叠的本质求角的度数,当条件中有某些角的度数已知时,综合题中的其 他条件,找已知角和未知角之间的关系,从而求得未知角的度数。 若条件中没有任何一个角的度数已知时,该怎样思考呢? 体验感悟:(1)如图:在Rt△ABC中,∠ACB=90°,∠A∠B, M是斜边的中点,将三角形ACM沿CM折叠,点A落在点D处,若 CD恰好与AB垂直,则∠A= 点评:本题条件中没有任何一个角的度数是已知的时候,要把 线段之间的关系转化为角的度数,通过设元,利用方程思想,然后- M 求得未知角的度数。下面请同学们自己动手试一试。 (2)如图,CD是Rt△ABC斜边上的高,将△BCD沿CD折叠,B点 恰好落在AB的中点E处,则∠A等于(B) C A25° B30° C45° D60 点评:这两题和例题的区别在于条件中没有任何一个角的度数是 解压密码联系q119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxue5u.taobao.com 4 E D B
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 折叠中的直角三角形 教学目标 知识目标:通过复习过程,使学生进一步理解折叠问题的本质是图形的轴对称变换,会利用轴 对称变换的性质进行有关的计算和证明。培养学生运用知识的能力。 能力目标:能运用转化的数学思想方法解决问题,提高解题的灵活性,并学会归纳总结解题方 法。 情感目标:通过学生动手操作, 激发学生学习的兴趣,培养学生的自主学习的能力,让学生主动 参与到学习探索的过程中来,加强其进一步学习的自信心。 教学重点 通过动手操作,应用轴对称性解决折叠问题。 教学难点 学生通过折叠自己进行解题过程较难,思维不易发散 设计亮点 教学过程 备 注 一、巧设情境,设疑引入 通过对特殊三角形一章的学习我们对直角三角形已经有了一定的认识和了解。今天我 们继续探讨和直角三角形有关的折叠问题。 【动动手,动动脑】:如图操作,折叠直角三角形纸片, 使点 C 落在 AB 上的点 E 处. (1)你能找出其中全等的三角形吗?△ADC≌△ADE (2)图中有哪些有相等的角和相等的线段? (3)图中的对称轴是哪条线段所在的直线? 从操作中不难看出,折叠操作“折”是过程, “叠”是结果。但是,折叠问题不能只靠动手操作 来解决,我们必须透过现象看本质.那么折叠的本质又是什么呢? 学生归纳:折叠问 题的实质是图形的轴对称变换。利用轴对称变换得到对应的角相等 和对应的线段相等。 二、运用性质,归类探究 【归类一】:求 角的度数 例 1:如图,折叠直角三角形纸片,使点 C 落在 AB 上的点 E 处.已知∠B=30°, ∠C=90°,则∠BAD= ,∠ADE= 解:(教师板书解答过程) 点评:利用折叠的本质求角的度数,当条件中有某些角的度数已知时,综合题中的其 他条件,找已知角和未知角之间的关系,从而求得未知角的度数。 若条件中没有任何一个角的度数已知时,该怎样思考呢? 体验 感悟:(1)如图:在 Rt△ABC 中,∠ACB=90°,∠A<∠B, M 是斜边的中点,将三角形 ACM 沿 CM 折叠,点 A 落在点 D 处,若 CD 恰好与 AB 垂直,则∠A= . 解略; 点评:本题条件中没有任何一个角的度数是已知的时候,要把 线段之间的关系转化为角的度数,通过设元,利用方程思想,然后 求得未知角的度数。下面请同学们自己动手试一试。 (2)如图,CD 是 Rt△ABC 斜边上的高,将△BCD 沿 CD 折叠,B 点 恰好落在 AB 的中点 E 处,则∠A 等于( B ) A 25° B 30° C 45° D 60° 点评:这两题和例题的区别在于条件中没有任何一个角的度数是 C D A B E
免费下载网址http:/jiaoxue5u.ys168.con 已知的,要把线段之间的关系转化为角的度数,然后求得未知角的度 数。在难度上有所加深,其目的在于培养学生综合运用所学数学知识 解决问题的能力 利用折叠的性质,除了可以求角的度数之外,还可以求线段的长度 【归类二】求线段的长度 例2:如图,折叠直角三角形纸片,使点C落在AB上的点E处 已知BC=12,∠B=30°,∠C=90°,则DE的长是( A.6 D.2 B 分析:由题意可得,AD平分∠BAC,∠C=∠AED=90°,根据角平分线的性质和30°所 直角边等于斜边的一半求解.选B 例3:如图,在△ABC中,AB=3,AC=4BC=5,现将它折叠 使点C与点B重合,求CD的长 解:∵AB=3,AC=4.BC=5 ∵.△ABC为RT△,∠A=90°(勾股定理逆定理) ∴折叠∴CD=BD 设CD=BD=x,则AD=4-x 由勾股定理得:32+(4-x)2=x2 解得x=25 8 点评:解决折叠问题常常需要用到勾股定理.勾股定理是解决折叠问题中线段长度的 基本工具它可以充分利用图形的几何性质,将其中的基本的数量关系用方程的形式表 达出来 课堂小结 折叠=一个本质+两个数学思想+二个归类 板书设计 作业安排 教学反思 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxue5u.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 已知的,要把线段之间的关系转化为角的度数,然后求得未知角的度 数。在难度上有所加深,其目的在于培养学生综合运用所学数学知识 解决问题的能力。 利用折叠的性质,除了可以求角的度数之外,还可以求线段的长度。 【归类二】:求线段的长度 例 2:如图,折叠直角三角形纸片,使点 C 落在 AB 上的点 E 处. 已知 BC=12,∠B=30°,∠C=90°,则 DE 的长是( ) A. 6 B.4 C.3 D.2 分析:由题意可得,AD 平分∠BAC,∠C=∠AED=90°,根据角平分线的 性质和 30°所对 直角边等于斜边的一半求解.选 B. 例 3:如图,在△ABC 中,AB=3,AC=4.BC=5,现将它折叠, 使点 C 与点 B 重合,求 CD 的长。 解:∵ AB=3,AC=4.BC=5 ∴ △ABC 为RT△,∠A=90°(勾股定理逆定理) ∵折叠∴CD=BD 设CD=BD=x,则A D=4-x 由勾股定理得: 解得x= 点评:解决折叠问题常常需要用到勾股定理.勾股定理是解决折叠问题中线段长度的 基本工具 .它可以充分利用图形的几何性质,将其中的基本的数量关系用方程的形式表 达出来. 课堂小结: 折叠=一个本质+两个数学思想+二个归类 板书设计: 作业安排: 教学反思: B C A D E 2 2 2 3 +(4- x) = x 8 25
免费下载网址ht: laoxue5uysl68com/ 解压密码联系qq1139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxue5u.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com