免费下载网址htt:/ jiaoxue5uys168com/ 16.4角的平分线 [教学目标 1、经历角平分线性质的发现过程,并通过将这一过程与线段垂直平分线性质的发现过 程作对比,体会隐含其中的由“点”研究“线”的研究思想。 2、类比已学的“线段的垂直平分线”的知识结构和方法结构,通过探索和证明,建立 角的平分”一节的知识结构,并在探索和证明过程中,体会数学表述的严密性要求。 3、初步掌握角平分线的性质定理、逆定理以及用集合观点表述角平分线等知识,并能 运用上述知识解决简单的几何问题 [教学过程(实录)] 、复习旧知,引入课题 通过多媒体展示飞机(模型-纸飞机),让学生折飞机,并引导学生观察折痕得出本节 课的课题一—角的平分线 二、创设情景,学习新知 角的平分线的画法 在角AOB中,画角平分线 作法: 1.以点0为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N. 2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P 3.作射线OP 则射线OP为角AOB的角平分线 让学生自己在草稿纸上自己画,同桌相互检査,集体订正。 师:上节课我们用一种探索的方法,对线段的垂直平分线作了较为深入的研究,今天 我们要用类似的方法对角的平分线进行研究。 板书:角的平分线 请同学们先回忆一下,关于角的平分线我们已经学过的有关结论 生(1):∠AOC=∠BOC:角是轴对称图形,对称轴是0C所在的直线c 师:板书:已有知识: 若:OC是∠AOB的平分线 则:①∠1=∠2 0C所在的直线是∠AOB的对称轴 那么关于角的平分线,还有哪些其他结论呢?请大家以小组为单位进行合作探究 探究得出性质定理 下发课堂教学操作单1。(“操作单”见附一) 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 16.4 角的平分线 [教学目标] 1、经历角平分线性质的发现过程,并通过将这一过程与线段垂直平分线性质的发现过 程作对比,体会隐含其中的由“点”研究“线”的研究思想。 2、类比已学的“线段的垂直平分线”的知识结构和方法结构,通过探索和证明,建立 “角的平分”一节的知识结构,并在探索和证明过程中,体会数学表述的严密性要求。 3、初步掌握角平分线的性质定理、逆定理以及用集合观点表述角平分线等知识,并能 运用上述知识解决简单的几何问题。 [教学过程(实录)] 一、复习旧知,引入课题 通过多媒体展示飞机(模型-纸飞机),让学生折飞机,并引导学生观察折痕得出本节 课的课题——角的平分线. 二、创设情景,学习新知 角的平分线的画法: 在角 AOB 中,画角平分线 作法: 1.以点 O 为圆心,以任意长为半径画弧,两弧交角 AOB 两边于点 M,N. 2.分别以点 M,N 为圆心,以大于1/2MN 的长度为半径画弧,两弧交于点 P 3.作射线 OP 则射线 OP 为角 AOB 的角平分线 让学生自己在草稿纸上自己画,同桌相互检查,集体订正。 师:上节课我们用一种探索的方法,对线段的垂直平分线作了较为深入的研究,今天 我们要用类似的方法对角的平分线进行研究。 板书:角的平分线 请同学们先回忆一下,关于角的平分线我们已经学过的有关结论。 生(1): ∠AOC=∠BOC;角是轴对称图形,对称轴是 OC 所在的直线。 师: 板书:已有知识: 若:OC 是∠AOB 的平分线 则:①∠1=∠2 ②OC 所在的直线是∠AOB 的对称轴 那么关于角的平分线,还有哪些其他结论呢?请大家以小组为单位进行合作探究。 二、探究得出性质定理 师 下发课堂教学操作单 1。(“操作单”见附一) 1 2 O C B A
免费下载网址htt:/ jiaoxue5uys168com/ 课件显示课堂教学操作单1 生(众):以小组为单位进行合作探究,并填写操作单1。 巡视,并适时介入讨论 下面我们把各组探究的成果一起来交流一下。先从研究方法说起 生(2):在OC上任取一点P,过P作PD⊥OA,PE⊥OB。此时可以得到PD=PE 师:板书:新的结论(猜): 在OC上任取一点P,过P作PD⊥OA,PE⊥OB, 垂足分别为D、E。则:PD=PE 会证明吗? 生②2):会。学生叙述证明过程 师:这样我们就得到了一个新的结论(擦去“猜”字)。这就是角的平分线的性质定理。 板书:定理: 生(3):在角的平分线上的点到这个角的两边的距离相等。 板书:在角的平分线上的点到这个角的两边的距离相等 大家对他们小组的研究方法和研究结果有什么不同看法,或者有补充意见吗 生(众):没有 师:我刚才看到有同学画角平分线的垂线的 生(4):是我,后来发现不对的,(投影显示图形) 这里是角平分线加垂线得等腰三角形,结论都是学过的,没有新的内容 好,看来我们通过适当的研究,得到了一个大家信服的结果。但老师有几个不明白 的地方想问大家。 问题1:在OC上任取一点,这一点包括点0吗?为什么? 生(5):不包括,因为点P在点0处时,垂线段画不出来,证明过程也无效 生(6):包括的,点P在点0时,点P到OA、OB的距离都为零,相等,所以结论仍成立。 生(5):我说的是图画不出来,证明不对,结论是对的,但不能这样证明。 生(6):我想应该分点P与点0重合,不重合两种情况讨论。 师:很好!我们可以肯定我们得出的定理没问题,至于证明大家想的比书上写的更好 老师还有第二个问题:你怎么就想到在角平分上任取一点然后作角的两边的垂线段 呢?为什么不想其他办法? 生(众):上一节也是这样的。 师:上一节是线段的垂直线平分线,这一节是角的平分线。 生(7):反正是这种特殊的线 师:板书:先在特殊的线(研究对象)上任取一点 那么又为什么要作角的边的垂线段呢?上一节不是和“点”联结得到两条线段再得 到相等的吗? 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 课件显示课堂教学操作单 1 生(众):以小组为单位进行合作探究,并填写操作单 1。 师: 巡视,并适时介入讨论。 下面我们把各组探究的成果一起来交流一下。先从研究方法说起。 生(2): 在 OC 上任取一点 P,过 P 作 PD⊥OA,PE⊥OB。此时可以得到 PD=PE 师: 板书:新的结论(猜): 在 OC 上任取一点 P,过 P 作 PD⊥OA,PE⊥OB, 垂足分别为 D、E。则:PD=PE。 会证明吗? 生(2) : 会。学生叙述证明过程。 师: 这样我们就得到了一个新的结论(擦去“猜”字)。这就是角的平分线的性质定理。 板书:定理: 生(3): 在角的平分线上的点到这个角的两边的距离相等。 师: 板书:在角的平分线上的点到这个角的两边的距离相等。 大家对他们小组的研究方法和研究结果有什么不同看法,或者有补充意见吗? 生(众):没有。 师: 我刚才看到有同学画角平分线的垂线的 生(4): 是我,后来发现不对的,(投影显示图形) 这里是角平分线加垂线得等腰三角形,结论都是学过的,没有新的内容。 好,看来我们通过适当的研究,得到了一个大家信服的结果。但老师有几个不明白 的地方想问大家。 问题 1:在 OC 上任取一点,这一点包括点 O 吗?为什么? 生(5): 不包括,因为点 P 在点 O 处时,垂线段画不出来,证明过程也无效。 生(6): 包括的,点 P 在点 O 时,点 P 到 OA、OB 的距离都为零,相等,所以结论仍成立。 生(5): 我说的是图画不出来,证明不对,结论是对的,但不能这样证明。 生(6): 我想应该分点 P 与点 O 重合,不重合两种情况讨论。 师: 很好!我们可以肯定我们得出的定理没问题,至于证明大家想的比书上写的更好。 老师还有第二个问题:你怎么就想到在角平分上任取一点然后作角的两边的垂线段 呢?为什么不想其他办法? 生(众): 上一节也是这样的。 师: 上一节是线段的垂直线平分线,这一节是角的平分线。 生(7): 反正是这种特殊的线。 师: 板书:先在特殊的线(研究对象) ..........上任取一点。 那么又为什么要作角的边的垂线段呢?上一节不是和“点”联结得到两条线段再得 到相等的吗? O E B A C P D B A C O P D E
免费下载网址htt:/ jiaoxue5uys168com/ 生(⑧):角的边上除了顶点没有其他特殊点,只有垂线段才是唯一能确定的特殊线段 师:板书:再作出特殊线段(能唯一确定的),然后加以比较。 好,我们来比较一下在探究线段垂直平分线的性质和角平分线性质时,我们所采用 的研究方法(结合课件讲述)。 其实这是几何学研究的一种基本方法。 师:通过刚才的讨论,我们已经感觉到“角的平分线”的问题与“线段的垂直平分线” 的问题,有很多相似之处,从对称性、性质定理,到研究的方法都很相似。因此我们可 以类比“线段的垂直平分线”一节的方法结构和知识结构来帮助我们得到“角的平分线” 的其他知识 下面请大家先独立思考,再小组讨论。 三、探究性质定理的逆定理 生(众):思考、讨论 巡视,并适时介入讨论。 下面我们再来交流一下各小组的研究成果。 生(8):我们先写出了逆命题,到角两边距离相等的点,在这个角的平分线上。(下边有议 论 师:板书:逆命题:到角的两边距离相等的点,在这个角的平分线上。 那么这个逆命题正确吗? 生(9):正确的,我证明出来了 投影显示图形,并叙述证明过程。 生(10)我们认为这个逆命题不正确,投影显示图形,并作叙述。 C B 图中看到点P在的角外部也行,但这点不在我们研究的范围内,即不在角的平分线上。 师:从两位同学的分析中我们看到:当点P在角的内部时,点P一定在角的平分线上 当点P在角的外部时,点P则在角平分线的延长线上。此时我们大致可以有两种处理办 法。一种是在条件部分直接限定点P“在角的内部”;另一种是在结论部分加上“或在 角平分线的延长线上”。大家觉得应选那一种? 生(11):第一种。 师:对,我们研究的是角的平分线,为了确保符合条件的点都落在角的平分线上,我们 要加限定条件“在角的内部”。 还有什么需要补充的吗? 生(12):我来补充:还要加“包括顶点”,因为“角的内部”不包括角的顶点,但角的顶 点符合条件而且在角的平分线上,所以要补进去。 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 生(8): 角的边上除了顶点没有其他特殊点,只有垂线段才是唯一能确定的特殊线段。 师: 板书:再作出特殊线段 ....(能唯一确定的),然后加以比较。 好,我们来比较一下在探究线段垂直平分线的性质和角平分线性质时,我们所采用 的研究方法(结合课件讲述)。 其实这是几何学研究的一种基本方法。 师: 通过刚才的讨论,我们已经感觉到“角的平分线”的问题与“线段的垂直平分线” 的问题,有很多相似之处,从对称性、性质定理,到研究的方法都很相似。因此我们可 以类比“线段的垂直平分线”一节的方法结构和知识结构来帮助我们得到“角的平分线” 的其他知识。 下面请大家先独立思考,再小组讨论。 三、探究性质定理的逆定理 生(众):思考、讨论。 师: 巡视,并适时介入讨论。 师: 下面我们再来交流一下各小组的研究成果。 生⑻: 我们先写出了逆命题,到角两边距离相等的点,在这个角的平分线上。(下边有议 论) 师: 板书:逆命题:到角的两边距离相等的点,在这个角的平分线上。 那么这个逆命题正确吗? 生(9): 正确的,我证明出来了。 投影显示图形,并叙述证明过程。 生(10) 我们认为这个逆命题不正确,投影显示图形,并作叙述。 图中看到点 P 在的角外部也行,但这点不在我们研究的范围内,即不在角的平分线上。 师: 从两位同学的分析中我们看到:当点 P 在角的内部时,点 P 一定在角的平分线上; 当点 P 在角的外部时,点 P 则在角平分线的延长线上。此时我们大致可以有两种处理办 法。一种是在条件部分直接限定点 P“在角的内部”;另一种是在结论部分加上“或在 角平分线的延长线上”。大家觉得应选那一种? 生(11): 第一种。 师: 对,我们研究的是角的平分线,为了确保符合条件的点都落在角的平分线上,我们 要加限定条件“在角的内部”。 还有什么需要补充的吗? 生(12): 我来补充:还要加“包括顶点”,因为“角的内部”不包括角的顶点,但角的顶 点符合条件而且在角的平分线上,所以要补进去。 E A C B O D P O E B A C P D
免费下载网址htt:/ jiaoxue5uys168com/ 师:非常好 将板书中的“命题”改为“定理”,并补上相应文字 那么有了这样一对互逆定理,我们又能得到什么结论呢? 生(13)。角的平分线可以看作是到角两边距离相等的点的集合 板书:集合观点:角的平分线可以看作是在角的内部(包括顶点)到角的两边距离 相等的点的集合。 四、练习巩固 师:处理第135-136面的第1、2题。师巡视,并适时与学生交流 附二:例1,已知:AO、BO分别是∠A、∠B的平分线, OD⊥BC,OE⊥AC,垂足分别为D、E,求证:点0在∠C的平分线上 E 生(众):尝试解例题 师 巡视,并请生(14)作分析。 B 生(14):投影显示图形,并叙述证明过程。 下面我将条件中的“OD⊥BC,OE⊥AB,垂足分别为D、E。”去掉,你还会证吗? [课件显示修改的文字和图形] 生(15):那就,添“这二条”线作为辅助线,证明方法一样。 师:从刚才的证明我们发现三角形的三条内角平分线一定如何? 生(众):一定相交于一点 师:当其中两条内角平分线改为两条外角平分线时又如何? [课件显示新图],并作说明 五、课堂小结 课堂教学操作单1 复习已学知识: 若:0C是∠AOB的平分线 则:①∠1=∠2 ②0C所在的直线是∠AOB的对称轴 探索新的知识: 解压密码联系qq11139686加微信公众号 Jlaoxuewuyo九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 师: 非常好。 将板书中的“命题”改为“定理”,并补上相应文字。 那么有了这样一对互逆定理,我们又能得到什么结论呢? 生(13)。 角的平分线可以看作是到角两边距离相等的点的集合。 师: 板书:集合观点:角的平分线可以看作是在角的内部(包括顶点)到角的两边距离 相等的点的集合。 四、练习巩固 师: 处理第 135-136 面的第 1、2 题。师巡视,并适时与学生交流。 附二:例 1,已知:AO、BO 分别是∠A、∠B 的平分线, OD⊥BC,OE⊥AC,垂足分别为 D、E,求证:点 O 在∠C 的平分线上 生(众): 尝试解例题。 师: 巡视,并请生(14)作分析。 生(14): 投影显示图形,并叙述证明过程。 师: 下面我将条件中的“OD⊥BC,OE⊥AB,垂足分别为 D、E。”去掉,你还会证吗? [课件显示修改的文字和图形] 生(15): 那就,添“这二条”线作为辅助线,证明方法一样。 师: 从刚才的证明我们发现三角形的三条内角平分线一定如何? 生(众): 一定相交于一点。 师: 当其中两条内角平分线改为两条外角平分线时又如何? [课件显示新图],并作说明 五、课堂小结 课堂教学操作单 1 复习已学知识: 若:OC 是∠AOB 的平分线 则:①∠1=∠2 ②OC 所在的直线是∠AOB 的对称轴 探索新的知识: 1 2 O C B A 1 2 O C B A 1 2 O C B A B A D C O E
免费下载网址htt:/ jiaoxue5uys168com/ 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com