第二十四章圆 24.1圆 第1课时圆
24.1 圆 第1课时 圆 第二十四章 圆
圆的世界
圆的世界
创设情景明确目标 这些图的共性:都给我们圆的形象
这些图的共性:都给我们圆的形象。 创设情景 明确目标
你还能举出生活中几个圆的例子吗?从本节课开始, 我们将会更清楚地了解圆以及一些相关的概念和性质
合作探究达成目标 探究点一圆的定义及相关概念 图1 1.圆的定义 (1)从旋转的角度理解:如图1,在一个平面 内,线段0A绕它固定的一个端点0旋转一周,另 个端点厮所形成的图形叫做圆,固定的端点0叫做圆 心,线段0A叫做半径
探究点一 圆的定义及相关概念 1.圆的定义 (1)从旋转的角度理解:如图1,在一个平面 内,线段OA绕它固定的一个端点O旋转一周,另一 个端点A所形成的图形叫做圆,固定的端点O叫做圆 心,线段OA叫做半径. 合作探究 达成目标
圆的确定 要确定一个圆,必须确定圆的圆心和半径 圆心确定圆的位量半径确定圆的大小, 这个以点O为圆心的圆叫作“圆0”,记为“⊙O
● 要确定一个圆,必须确定圆的____ 圆心和____ 半径 圆心确定圆的位置,半径确定圆的大小. O 这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”. 圆的确定
A1圆上各点到定点(圆心O)的距 离都等于定长(半径r) b E2到定点(圆心O)的距离都等于定 长(半径r)的点都在同一个圆上。 圆心为O,半径为r的圆可以看成是所有到定点的距 离等于定长r的点的集合。 我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径
O· A B C D E 1.圆上各点到定点(圆心O)的距 r 离都等于定长(半径r) r r r r 2.到定点(圆心O)的距离都等于定 长(半径r)的点都在同一个圆上。 圆心为O,半径为r的圆可以看成是所有到定点的距 离等于定长r的点的集合。 我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.
弦连结圆上任意两点的线段叫做孩。 如图,孩有ABBC、AC B 直径是圆中 最长的弦 在圆中有长度不同的孩 孩心距:圆心到孩的距离叫儆孩心距
O ● B C A 如图,弦有 AB、BC、AC 直径是圆中 最长的弦 连结圆上任意两点的线段叫做弦。 弦心距:圆心到弦的距离叫做弦心距。 弦
弧 曲线BC、BAC都是⊙O的弧分别记 作 BC、BAC BC、BAC有什么区别? B大于半原的那m做优弧,小于 个比半圆大一个比半圆小 半圆的则做劣弧 劣孤有:ABBC 半圆有: B 优弧有:AB函A 等狐:在同圆或瞢圆中,能够完全重合的弧
A 曲线BC、BAC都是⊙O的弧分别记 作: BC⌒ 、 BAC ⌒ 劣弧有:A B⌒ B C⌒ 半圆有 : AB⌒C BA⌒C 等弧:在同圆或等圆中,能够完全重合的弧。 BC⌒ 、BAC ⌒ 有什么区别? 优弧有: A⌒CB ● O B C A 一个比半圆大一个比半圆小! 大于半圆的弧叫做优弧,小于 半 圆 的 弧 叫 做 劣 弧 弧
注意: ①线段OA听形成的图形叫做圆面,而圆是一个封 闭的曲线图形,指的是圆周 ②在平面内画出圆,必须明确圆心和半径两个要 素,圆心确定位置,半径确定大小 ③以点0为圆心的圆,记作“(0,读作“圆0 那么以点A为圆心的圆,记作⊙Q,读作圆a
注意: ①线段OA所形成的图形叫做圆面,而圆是一个封 闭的曲线图形,指的是圆周. ②在平面内画出圆,必须明确圆心和半径两个要 素,圆心确定位置,半径确定大小. ③以点O为圆心的圆,记作“⊙O”,读作“圆O”. 那么以点A为圆心的圆,记作⊙O,读作圆O