14.3因式分解 14.3.1提取公因式法
14.3 因式分解 14.3.1提取公因式法
复习与回顾 整式的乘法 计算下列各式: x(x+1)=x2+x; (x+1)(x-1)=x2-1
整式的乘法 计算下列各式: x(x+1)= ; (x+1)(x-1)= . x 2 + x x 2-1
用老 630能被哪些数整除? 630=2×32×5×7 说说你是怎样想的
630能被哪些数整除? 说说你是怎样想的。 630 2 3 5 7 2 =
探究 请把下列多项式写成整式的乘积的形 式 (1)x x(x+1) (2)x2-1=(x+(1) 上面我们把一个多项式化成了几 个整式的积的形式像这样的式子变形 叫做把这个多项式因式分解也叫做把 这个多项式分解因式
请把下列多项式写成整式的乘积的形 式: (1)x 2+x=___________; (2)x 2 – 1=__________ . x(x+1) (x+1)(x-1) 上面我们把一个多项式化成了几 个整式的积的形式,像这样的式子变形 叫做把这个多项式因式分解,也叫做把 这个多项式分解因式
因式分解 (x+1)(x-1) 整式乘法 因式分解与整式乘法是相反方向的变形
x 2 -1 因式分解 整式乘法 (x+1)(x-1) 因式分解与整式乘法是相反方向的变形
ma+mb+mc 它的各项都有一个公共的因式m我们把因式m叫做 这个多项式的公因式 由m(叶b+d=ma+mb+mC可得: ma+mb+mc=m(a+b+4这样就把ma+mb+mc 分解成两个因式乘积的形式其中一个因式是各项的公 因式m另一个因式(叶+b+是m+mb+mc除以m 所得的商像这种分解因式的方法叫做
由m(a+b+c) = ma+mb+mc可得: ma+mb+mc =m(a+b+c)这样就把ma+mb+mc 分解成两个因式乘积的形式,其中一个因式是各项的公 因式m,另一个因式(a+b+c)是ma+mb+mc除以 m 所得的商,像这种分解因式的方法叫做 . 它的各项都有一个公共的因式m,我们把因式m叫做 这个多项式的 ma+mb+mc 公因式 提公因式法
例1把8a3b2+解图式 8a3b2+12ab3c的公因式是什么? 公因式4 b2 最大公约数相同字母最低指数 观察 方向看系数二看字母三看指数
8a3b2+12ab3c 的公因式是什么? 最大公约数 相同字母 最低指数 公因式 4 a b 2 一看系数 二看字母 三看指数 观察 方向 例1 把 8a 分解因式. 3b2+12ab3 c
例1把8m3b2+12ab3c分解因式 解:8a3b2+12ab3c 4ab22a2+4ab2°3bc =4ab2(2a2+3bc)
例1 把8a 3b 2 + 12ab3c 分解因式. 解:8a 3b 2+12ab3c =4ab2 •2a 2+4ab2 •3bc =4ab2 (2a 2+3bc)
例2把2a(b+c)-3(b+c)分解因式 分析:(b+c)是这个式子的公因式可以直接提出 解:2a(b+c)-3(b+c) =(b+c)(2a-3)
例2 把 2a(b+c) -3(b+c)分解因式. 分析:( b+c)是这个式子的公因式,可以直接提出. 解:2a(b+c) – 3(b+c) =(b+c)(2a-3)
练习一理解攏念 判断下列各式哪些是整式乘法?哪些是 因式分解? (1)x2-4y2=(x+2)(x-2y);因式分解 (2)2x(x-3y)=2x2-6xy 整式乘法 (3)(5a-1)2=25m2-10a+1;整式乘法 (4)x2+4x+4=(x+2)2; 因式分解 (5)(a-3)a+3)=m2-9 整式乘法 (6)mr2-4=(m+2)(m-2) 因式分解 (7)2nR+2F=2m(R+r 因式分解
练习一 理解概念 判断下列各式哪些是整式乘法?哪些是 因式分解? (1) x 2-4y 2=(x+2y)(x-2y); (2) 2x(x-3y)=2x 2-6xy (3) (5a-1)2=25a 2-10a+1 ; (4) x 2+4x+4=(x+2)2 ; (5) (a-3)(a+3)=a 2-9 (6) m2-4=(m+2)(m-2) ; (7) 2πR+ 2πr= 2π(R+r). 因式分解 整式乘法 整式乘法 因式分解 整式乘法 因式分解 因式分解