21.21配方法(3课时) 第1课时直接开平方法 教学目标“(( 理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题 提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程, 然后知识迁移到解a(ex+f2+c=0型的一元二次方程 重点难点“(<〈 重点 运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次—转化的数学思想 难点 通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x )2=n(n≥0)的方程 教字设计<《<〈 、复习引入 学生活动:请同学们完成下列各题 问题1:填空 (1)x2-8x+ )2;(2)9x2+12x+ )2:(3)x2 +px+ 解:根据完全平方公式可得:(1)l164:(2)42:(3)B)2 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方 程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 、探索新知 上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t 1,即(2t+1)2=9,能否也用直接开平方的方法求解呢? (学生分组讨论) 老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3 即2t+1=3,2t+1=-3 方程的两根为t=1,t=-2 例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2 分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1 (2)由已知,得:(x+3)2=2 直接开平方,得:x+3=±2 即x+3 所以,方程的两根x1=-3+V2,x2=-3-V 解:略 例2市政府计划2年内将人均住房面积由现在的10m2提高到144m2,求每年人均住 房面积增长率 分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1 +x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为ⅹ 则:10(1+x)2=144 (1+x)2=1.4
21.2.1 配方法(3 课时) 第 1 课时 直接开平方法 理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程 ax2+c=0,根据平方根的意义解出这个方程, 然后知识迁移到解 a(ex+f)2+c=0 型的一元二次方程. 重点 运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点 通过根据平方根的意义解形如 x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程. 一、复习引入 学生活动:请同学们完成下列各题. 问题 1:填空 (1)x2-8x+________=(x-________)2 ;(2)9x2+12x+________=(3x+________)2 ;(3)x2 +px+________=(x+________)2 . 解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2 ) 2 p 2 . 问题 2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方 程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知 上面我们已经讲了 x 2=9,根据平方根的意义,直接开平方得 x=±3,如果 x 换元为 2t +1,即(2t+1)2=9,能否也用直接开平方的方法求解呢? (学生分组讨论) 老师点评:回答是肯定的,把 2t+1 变为上面的 x,那么 2t+1=±3 即 2t+1=3,2t+1=-3 方程的两根为 t1=1,t2=-2 例 1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2 分析:(1)x2+4x+4 是一个完全平方公式,那么原方程就转化为(x+2)2=1. (2)由已知,得:(x+3)2=2 直接开平方,得:x+3=± 2 即 x+3= 2,x+3=- 2 所以,方程的两根 x1=-3+ 2,x2=-3- 2 解:略. 例 2 市政府计划 2 年内将人均住房面积由现在的 10 m2 提高到 14.4 m2,求每年人均住 房面积增长率. 分析:设每年人均住房面积增长率为 x,一年后人均住房面积就应该是 10+10x=10(1 +x);二年后人均住房面积就应该是 10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为 x, 则:10(1+x)2=14.4 (1+x)2=1.44
直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-22 因为每年人均住房面积的增长率应为正的,因此,x2=-22应舍去 所以,每年人均住房面积增长率应为20 (学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想 称为“降次转化思想” 三、巩固练习 教材第6页练习 四、课堂小结 本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=转化为应 用直接开平方法解形如(mx+n=p(p≥0)的方程,那么mx+n=±vp,达到降次转化之 的.若p<0则方程无解. 五、作业布置 教材第16页复习巩固1第2课时配方法的基本形式 教学目标<(< 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题 通过复习可直接化成x2=p(p≥0)或(mx+n2=p(p≥0)的一元二次方程的解法,引入不 能直接化成上面两种形式的一元二次方程的解题步骤 重点难点<((〈 重点 讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤 难点 将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧 教学设计“<< 复习引入 (学生活动)请同学们解下列方程: 1)3x2-1=5(2)4(x-1)2-9=0(34x2+16x+16=9(4)4x2+16x=-7 老师点评:上面的方程都能化成x2=p或(mx+n2=p(p≥0)的形式,那么可得 √p或mx+n=±√p(p≥0) 如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗? 探索新知 列出下面问题的方程并回答 (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面前三个方程的解法呢? 问题:要使一块矩形场地的长比宽多6m,并且面积为16m,求场地的长和宽各是多 少 (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征 (2)不能 既然不能直接降次解方程哪么我们就应该设法把它转化为可直接降次解方程的方程 下面,我们就来讲如何转化
直接开平方,得 1+x=±1.2 即 1+x=1.2,1+x=-1.2 所以,方程的两根是 x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2 应舍去. 所以,每年人均住房面积增长率应为 20%. (学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想 称为“降次转化思想”. 三、巩固练习 教材第 6 页 练习. 四、课堂小结 本节课应掌握:由应用直接开平方法解形如 x 2=p(p≥0)的方程,那么 x=± p转化为应 用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么 mx+n=± p,达到降次转化之目 的.若 p<0 则方程无解. 五、作业布置 教材第 16 页 复习巩固 1.第 2 课时 配方法的基本形式 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成 x 2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不 能直接化成上面两种形式的一元二次方程的解题步骤. 重点 讲清直接降次有困难,如 x 2+6x-16=0 的一元二次方程的解题步骤. 难点 将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 一、复习引入 (学生活动)请同学们解下列方程: (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7 老师点评:上面的方程都能化成 x 2=p 或(mx+n)2=p(p≥0)的形式,那么可得 x=± p或 mx+n=± p(p≥0). 如:4x2+16x+16=(2x+4)2,你能把 4x2+16x=-7 化成(2x+4)2=9 吗? 二、探索新知 列出下面问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面前三个方程的解法呢? 问题:要使一块矩形场地的长比宽多 6 m,并且面积为 16 m2,求场地的长和宽各是多 少? (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有 x 的完全平方式而后二个不具有此特征. (2)不能. 既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程, 下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16 两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9 左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5 解一次方程→x1=2,x2=-8 可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 长为8m 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解 例1用配方法解下列关于x的方程: (1)x2-8x+1=0(2x2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方 式:(2)同上 解:略 三、巩固练习 教材第9页练习1,2.(1)(2) 四、课堂小结 本节课应掌握: 左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式右边 是非负数,可以直接降次解方程的方程 五、作业布置 教材第17页复习巩固2,3(1)(2),.第3课时配方法的灵活运用 教学目标“(< 了解配方法的概念,掌握运用配方法解一元二次方程的步骤 通过复习上一节课的解题方法给出配方法的概念然后运用配方法解决一些具体题目 点难点“<< 重点 讲清配方法的解题步骤 难点 对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后·两边 加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次 项系数为1,再用配方法求解 教字设计“<< 复习引入 (学生活动)解下列方程: 1)x2-4x+7=0(2)2x2-8x+1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次 方程以及不可以直接开方降次解方程的转化问题哪那么这两道题也可以用上面的方法进行解 解:略.(2)与(1)有何关联? 探索新知 讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式
x 2+6x-16=0 移项→x 2+6x=16 两边加(6/2)2 使左边配成 x 2+2bx+b 2 的形式→x 2+6x+3 2=16+9 左边写成平方形式→(x+3)2=25 降次→x+3=±5 即 x+3=5 或 x+3=-5 解一次方程→x1=2,x2=-8 可以验证:x1=2,x2=-8 都是方程的根,但场地的宽不能是负值,所以场地的宽为 2 m,长为 8 m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例 1 用配方法解下列关于 x 的方程: (1)x2-8x+1=0 (2)x2-2x- 1 2 =0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方 式;(2)同上. 解:略. 三、巩固练习 教材第 9 页 练习 1,2.(1)(2). 四、课堂小结 本节课应掌握: 左边不含有 x 的完全平方形式的一元二次方程化为左边是含有 x 的完全平方形式,右边 是非负数,可以直接降次解方程的方程. 五、作业布置 教材第 17 页 复习巩固 2,3.(1)(2).第 3 课时 配方法的灵活运用 了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目. 重点 讲清配方法的解题步骤. 难点 对于用配方法解二次项系数为 1 的一元二次方程,通常把常数项移到方程右边后,两边 加上的常数是一次项系数一半的平方;对于二次项系数不为 1 的一元二次方程,要先化二次 项系数为 1,再用配方法求解. 一、复习引入 (学生活动)解下列方程: (1)x2-4x+7=0 (2)2x2-8x+1=0 老师点评:我们上一节课,已经学习了如何解左边不含有 x 的完全平方形式的一元二次 方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解 题. 解:略. (2)与(1)有何关联? 二、探索新知 讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式;
(2)化二次项系数为1 (3)常数项移到右边 (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式 (5)变形为(x+p=q的形式,如果q≥0,方程的根是x=-plq:如果q<0,方程无 实根 例1解下列方程: (1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配 个含有x的完全平方式 解:略 三、巩固练习 教材第9页练习2.(3)(4)(5)6) 四、课堂小结 本节课应掌握 1·配方法的概念及用配方法解一元二次方程的步骤 2·配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法 中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中 学习二次曲线时,还将经常用到 五、作业布置 教材第17页复习巩固3(3)(4). 补充:(1)已知x2+y2+z-2x+4y-6z+14=0,求x+y+z的值 (2)求证:无论xy取任何实数,多项式x2+y2-2x-4y+16的值总是正数2122公 式法 教字目标“<<< 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元 二次方程 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公 式的推导,并应用公式法解一元二次方程 重点难点“<<〈 重点 求根公式的推导和公式法的应用 难点 元二次方程求根公式的推导 教学设计“<< 、复习引入 1·前面我们学习过解一元二次方程的“直接开平方法”,比如,方程 (1)x2=4(2)(x-2)2=7 提问1这种解法的(理论)依据是什么? 提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程 有效,不能实施于一般形式的二次方程.) 2·面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接 开平方”的形式.) (学生活动用配方法解方程2x2+3=7x
(2)化二次项系数为 1; (3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q 的形式,如果 q≥0,方程的根是 x=-p± q;如果 q<0,方程无 实根. 例 1 解下列方程: (1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一 个含有 x 的完全平方式. 解:略. 三、巩固练习 教材第 9 页 练习 2.(3)(4)(5)(6). 四、课堂小结 本节课应掌握: 1.配方法的概念及用配方法解一元二次方程的步骤. 2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法 中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中 学习二次曲线时,还将经常用到. 五、作业布置 教材第 17 页 复习巩固 3.(3)(4). 补充:(1)已知 x 2+y 2+z 2-2x+4y-6z+14=0,求 x+y+z 的值. (2)求证:无论 x,y 取任何实数,多项式 x 2+y 2-2x-4y+16 的值总是正数.21.2.2 公 式法 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元 二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入 ax2+bx+c=0(a≠0)的求根公 式的推导,并应用公式法解一元二次方程. 重点 求根公式的推导和公式法的应用. 难点 一元二次方程求根公式的推导. 一、复习引入 1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程 (1)x2=4 (2)(x-2)2=7 提问 1 这种解法的(理论)依据是什么? 提问 2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程 有效,不能实施于一般形式的二次方程.) 2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接 开平方”的形式.) (学生活动)用配方法解方程 2x2+3=7x
(老师点评)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评) (1)先将已知方程化为一般形式 (2)化二次项系数为 (3)常数项移到右边 (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)=q的形式,如果q≥0,方程的根是x=-pq:如果q<0,方程无 实根 探索新知 用配方法解方程: (1)ax2-7x+3=0(2)ax2+bx+3=0 如果这个一元二次方程是一般形式ax2+bx+c=0a≠0),你能否用上面配方法的步骤 求出它们的两根,请同学独立完成下面这个问题 问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x b+√b2-4ac ,X2- b 这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字己做得很多,我们现在不妨把a,b,c也当成一个具体数字, 根据上面的解题步骤就可以一直推下去 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+ 配方,得:x2+x+( +(x)2 b--4ac 即(x 4a2 420,当b2-4ac0时,b4ac 4a2≥0 直接开平方,得:x+b=b2-4ac 由上可知,一元二次方程ax2+bx+c=0a≠0的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时, 将a,b,c代入式子x b+b2-4ac 就得到方程的根 2a (2)这个式子叫做一元二次方程的求根公式 (3)利用求根公式解一元二次方程的方法叫公式法 公式的理解 (4)由求根公式可知,一元二次方程最多有两个实数根
(老师点评)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)先将已知方程化为一般形式; (2)化二次项系数为 1; (3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q 的形式,如果 q≥0,方程的根是 x=-p± q;如果 q<0,方程无 实根. 二、探索新知 用配方法解方程: (1)ax2-7x+3=0 (2)ax2+bx+3=0 如果这个一元二次方程是一般形式 ax2+bx+c=0(a≠0),你能否用上面配方法的步骤 求出它们的两根,请同学独立完成下面这个问题. 问题:已知 ax2+bx+c=0(a≠0),试推导它的两个根 x1 = -b+ b 2-4ac 2a ,x2= -b- b 2-4ac 2a (这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把 a,b,c 也当成一个具体数字, 根据上面的解题步骤就可以一直推下去. 解:移项,得:ax2+bx=-c 二次项系数化为 1,得 x 2+ b a x=- c a 配方,得:x 2+ b a x+( b 2a) 2=- c a +( b 2a) 2 即(x+ b 2a) 2= b 2-4ac 4a2 ∵4a2>0,当 b 2-4ac≥0 时, b 2-4ac 4a2 ≥0 ∴(x+ b 2a) 2=( b 2-4ac 2a ) 2 直接开平方,得:x+ b 2a=± b 2-4ac 2a 即 x= -b± b 2-4ac 2a ∴x1= -b+ b 2-4ac 2a ,x2= -b- b 2-4ac 2a 由上可知,一元二次方程 ax2+bx+c=0(a≠0)的根由方程的系数 a,b,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式 ax2+bx+c=0,当 b 2-4ac≥0 时, 将 a,b,c 代入式子 x= -b± b 2-4ac 2a 就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解 (4)由求根公式可知,一元二次方程最多有两个实数根.
例1用公式法解下列方程 (1)2x2-x-1=0(2)x2+1.5=-3x (3)x2-2x+=0(4)4x2-3x+2=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可 补:(5)(x-2)(3x-5) 三、巩固练习 教材第12页练习1.(1)(3)(5)或(2)4)6) 四、课堂小结 本节课应掌握: (1)求根公式的概念及其推导过程 (2)公式法的概念 (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式注意移项要变号 尽量让a>0:2)找出系数a,b,c,注意各项的系数包括符号:3)计算b2-4ac,若结果为负 数,方程无解;4)若结果为非负数,代入求根公式,算出结果 (4)初步了解一元二次方程根的情况 五、作业布置 教材第17页习题4,521.2.3因式分解法 教学目标“<<〈 掌握用因式分解法解一元二次方程 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法—因式分解 法解一元二次方程’并应用因式分解法解决一些具体问题 重点难点“<<〈 重点 用因式分解法解一元二次方程. 难点 让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便 教字设计“<< 一、复习引入 (学生活动)解下列方程 (1)2x2+x=0用配方法)(2)3x2+6x=0(用公式法) 老师点评:()方法将方程两边同除以2后,x前面的系数应为2的一半应为,因 此,应加上(,同时减去((2)直接用公式求解 二、探索新知 学生活动)请同学们口答下面各题 (老师提问)1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? (学生先答,老师解答)上面两个方程中都没有常数项:左边都可以因式分解 因此,上面两个方程都可以写成 (1)x(2x+1)=0(2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0
例 1 用公式法解下列方程: (1)2x2-x-1=0 (2)x2+1.5=-3x (3)x2- 2x+ 1 2 =0 (4)4x2-3x+2=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x-2)(3x-5)=0 三、巩固练习 教材第 12 页 练习 1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号, 尽量让 a>0;2)找出系数 a,b,c,注意各项的系数包括符号;3)计算 b 2-4ac,若结果为负 数,方程无解;4)若结果为非负数,代入求根公式,算出结果. (4)初步了解一元二次方程根的情况. 五、作业布置 教材第 17 页 习题 4,5.21.2.3 因式分解法 掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解 法解一元二次方程,并应用因式分解法解决一些具体问题. 重点 用因式分解法解一元二次方程. 难点 让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便. 一、复习引入 (学生活动)解下列方程: (1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同除以 2 后,x 前面的系数应为1 2 , 1 2 的一半应为1 4 ,因 此,应加上( 1 4 ) 2,同时减去( 1 4 ) 2 .(2)直接用公式求解. 二、探索新知 (学生活动)请同学们口答下面各题. (老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x+1)=0 (2)3x(x+2)=0 因为两个因式乘积要等于 0,至少其中一个因式要等于 0,也就是(1)x=0 或 2x+1=0
所以x1=0, (2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何实现降次的? 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解 使方程化为两个一次式的乘积等于0的形式再使这两个一次式分别等于0,从而实现降次 这种解法叫做因式分解法 例1解方程 (1)10x-49x2=0(2)x(x-2)+x-2=0(3)5 (4)x-1)2=(3 思考:使用因式分解法解一元二次方程的条件是什么? 解:略(方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是() A·(x-3)(x-5)=10×2:∴x-3=10,x-5=2,∴x1=13,x2=7 B·(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1 C·(x+2)2+4x=0,∴x1=2,x2=-2 两边同除以x,得x=1 三、巩固练习 教材第14页练习1,2 四、课堂小结 本节课要掌握: (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用 (2因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等 于0. 五、作业布置 教材第17页习题6,8,10,11.21.24一元二次方程的根与系数的关系 教学目标“(<〈 掌握一元二次方程的根与系数的关系并会初步应用 2·培养学生分析、观察、归纳的能力和推理论证的能力 3·渗透由特殊到一般’再由一般到特殊的认识事物的规律. 4·培养学生去发现规律的积极性及勇于探索的精神 点难点“<< 重点 根与系数的关系及其推导 难点 正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和 两根的积与系数的关系 教字设计<<< 、复习引入 1·已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值 2·由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式 也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
所以 x1=0,x2=- 1 2 . (2)3x=0 或 x+2=0,所以 x1=0,x2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解 使方程化为两个一次式的乘积等于 0 的形式,再使这两个一次式分别等于 0,从而实现降次, 这种解法叫做因式分解法. 例 1 解方程: (1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x- 1 4 =x 2-2x+ 3 4 (4)(x-1)2=(3- 2x)2 思考:使用因式分解法解一元二次方程的条件是什么? 解:略 (方程一边为 0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( ) A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7 B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1= 2 5 ,x2= 3 5 C.(x+2)2+4x=0,∴x1=2,x2=-2 D.x 2=x,两边同除以 x,得 x=1 三、巩固练习 教材第 14 页 练习 1,2. 四、课堂小结 本节课要掌握: (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为 0,再分别使各一次因式等 于 0. 五、作业布置 教材第 17 页 习题 6,8,10,11.21.2.4 一元二次方程的根与系数的关系 1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神. 重点 根与系数的关系及其推导 难点 正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、 两根的积与系数的关系. 一、复习引入 1.已知方程 x 2-ax-3a=0 的一个根是 6,则求 a 及另一个根的值. 2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式 也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
b+Vb2-4ac 3·由求根公式可知,一元二次方程ax2+b+c=0(a≠0)的两根为x1 62二4观察两式右边,分母相同,分子是一b+、b-一与-b-b一两根 之间通过什么计算才能得到更简洁的关系? 二、探索新知 解下列方程’并填写表格: 方程xxx+xx·x x2+3x-4=0 观察上面的表格,你能得到什么结论? (1)关于x的方程x2+px+q=0(p:q为常数,p2-4q≥0)的两根x,x与系数p,q之 间有什么关系? (2)关于x的方程ax2+bx+c=0(a≠0)的两根x1x2与系数a,b,c之间又有何关系呢? 你能证明你的猜想吗? 解下列方程,并填写表格: 方程 1+x2x1·x2 2x2-7x-4=0 3x2+2x-5=0 5x2-17x+6=0 小结:根与系数关系 (1)关于x的方程x2+px+q=0p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的 关系是:x1+x2=-p,x·x2=q注意:根与系数关系的前提条件是根的判别式必须大于或 等于零.) (2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论 即:对于方程ax2+bx+c=0(a≠0) a≠0,∴x2+-x+=0 X1·X2 (可以利用求根公式给出证明) 例1不解方程,写出下列方程的两根和与两根积 (1)x2-3x-1=0 (2)2x2+3x-5=0 (3)2x2-2x=0(4)V2x2 √3 (5)x2-1=0(6)x2-2x+1=0 例2不解方程,检验下列方程的解是否正确? (1)x2-22x+1=0(x1=V2+1,x2=2-1) 7+√73 (2)2x2-3x-8=0(x1 例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几
3.由求根公式可知,一元二次方程 ax2+bx+c=0(a≠0)的两根为 x1= -b+ b 2-4ac 2a , x2= -b- b 2-4ac 2a .观察两式右边,分母相同,分子是-b+ b 2-4ac与-b- b 2-4ac.两根 之间通过什么计算才能得到更简洁的关系? 二、探索新知 解下列方程,并填写表格: 方程 x1 x2 x1+x2 x1·x2 x 2-2x=0 x 2+3x-4=0 x 2-5x+6=0 观察上面的表格,你能得到什么结论? (1)关于 x 的方程 x 2+px+q=0(p,q 为常数,p 2-4q≥0)的两根 x1,x2 与系数 p,q 之 间有什么关系? (2)关于 x 的方程 ax2+bx+c=0(a≠0)的两根 x1,x2 与系数 a,b,c 之间又有何关系呢? 你能证明你的猜想吗? 解下列方程,并填写表格: 方程 x1 x2 x1+x2 x1·x2 2x2-7x-4=0 3x2+2x-5=0 5x2-17x+6=0 小结:根与系数关系: (1)关于 x 的方程 x 2+px+q=0(p,q 为常数,p 2-4q≥0)的两根 x1,x2 与系数 p,q 的 关系是:x1+x2=-p,x1·x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或 等于零.) (2)形如 ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为 1,再利用上面的结论. 即:对于方程 ax2+bx+c=0(a≠0) ∵a≠0,∴x 2+ b a x+ c a =0 ∴x1+x2=- b a ,x1·x2= c a (可以利用求根公式给出证明) 例 1 不解方程,写出下列方程的两根和与两根积: (1)x2-3x-1=0 (2)2x2+3x-5=0 (3)1 3 x 2-2x=0 (4) 2x 2+ 6x= 3 (5)x2-1=0 (6)x2-2x+1=0 例 2 不解方程,检验下列方程的解是否正确? (1)x2-2 2x+1=0 (x1= 2+1,x2= 2-1) (2)2x2-3x-8=0 (x1= 7+ 73 4 ,x2= 5- 73 4 ) 例 3 已知一元二次方程的两个根是-1 和 2,请你写出一个符合条件的方程.(你有几
种方法?) 例4已知方程2x2+kx-9=0的一个根是一3,求另一根及k的值 变式一:已知方程x2-2kx-9=0的两根互为相反数,求k 变式二:已知方程2x2-5x+k=0的两根互为倒数,求k 三、课堂小结 1·根与系数的关系 2·根与系数关系使用的前提是:(1)是一元二次方程:(2)判别式大于等于零 四、作业布置 1·不解方程,写出下列方程的两根和与两根积 (1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0 (4)3x2+x+1=0 2·已知方程x2-3x+m=0的一个根为1,求另一根及m的值 3·已知方程x2+bx+6=0的一个根为-2,求另一根及b的值
种方法?) 例 4 已知方程 2x2+kx-9=0 的一个根是-3,求另一根及 k 的值. 变式一:已知方程 x 2-2kx-9=0 的两根互为相反数,求 k; 变式二:已知方程 2x2-5x+k=0 的两根互为倒数,求 k. 三、课堂小结 1.根与系数的关系. 2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零. 四、作业布置 1.不解方程,写出下列方程的两根和与两根积. (1)x2-5x-3=0 (2)9x+2=x 2 (3)6x2-3x+2=0 (4)3x2+x+1=0 2.已知方程 x 2-3x+m=0 的一个根为 1,求另一根及 m 的值. 3.已知方程 x 2+bx+6=0 的一个根为-2,求另一根及 b 的值