第三章有理数的运算 31有理数的加法与减法 第2课时
第三章 有理数的运算 3.1 有理数的加法与减法 第2课时
新课引入 、∵9+8=17;8+9 17 9+8 8+9。 小学里这种运算律叫做加法加法交换律。 2、∵(2+3)+4=9 2+(3+4)=9; (2+3)+4 2+(3+4) 小学里这种运算律叫做加法加法结合律
一、新课引入 1、∵9+8=______;8+9=______; ∴9+8_____8+9。 小学里这种运算律叫做加法_________。 2、∵(2+3)+4=____; 2+(3+4)=____; ∴(2+3)+4_____2+(3+4)。 小学里这种运算律叫做加法_________。 17 17 = 加法交换律 9 9 = 加法结合律
、学习目标 的)1、进一步掌握有理数加法的运算法则 2、能合理运用加法运算律化简运
二、学习目标 1、进一步掌握有理数加法的运算法则; 2、能合理运用加法运算律化简运 算
研读课文 认真阅读课本第19页至第20页的内容,完成下面练习,并体验 知识点的形成过程。 知识点一探究加法运算律 1、计算 (1)(-8)+(-9)=-17;(-9)+(-8)=-17 (2)30+(-20)=10 (-20)+30=10 根据计算结果你可发现:a+b=b+a,这种运算律称 为加法交换律。 有理数的加法中,两个数相加,交换加数_的位置, 和不变
三、研读课文 认真阅读课本第19页至第20页的内容,完成下面练习,并体验 知识点的形成过程。 知识点一 探究加法运算律 1、计算 (1)(-8)+(-9)= ;(-9)+(-8)= ____ (2)30+(-20)= ;(-20)+30=______ 根据计算结果你可发现:a+b=______,这种运算律称 为加法_________律。 有理数的加法中,两个数相加,交换_______的位置, _________不变. -17 -17 10 10 b+a 交换 加数 和
、研读课文 认真阅读课本第19页至第20页的内容,完成下面练习,并体验 知识点的形成过程。 知识点一探究加法运算律 2、计算:(1)[2+(-3)]+(8)≈9 2+[(-3)+(-8)]= 9 (2)+(-5)+(4)=1 8+[(-5)+(4)]= 根据计算结果你可发现 a+b)+c=a+(b+c)这种运算律称为加法结合律。 有理数的加法中,三个数相加,先把前两个数相加或者二 先把后两个数相加,和不变
三、研读课文 认真阅读课本第19页至第20页的内容,完成下面练习,并体验 知识点的形成过程。 知识点一 探究加法运算律 2、计算:(1)[2+(-3)]+(-8)= ———— 2+[(-3)+(-8)] =———— (2)[8+(-5)]+(-4)=———— 8+[(-5)+(-4)] =———— -9 -9 -1 -1 根据计算结果你可发现: (a+b)+c=________ a+(b+c) 这种运算律称为加法________ 结合 律。 有理数的加法中,三个数相加,先把前两个数相加,或者 __________________, 先把后两个数相加 和不变
、研读课文 认真阅读课本第19页至第20页的内容,完成下面练习, 并体验知识点的形成过程。 知识点二加法运算律的应用(使计算简便) 例2计算16+(25)+24+(-35) 解法1:16+(-25)+24+(35)解法2:16+(-25)+24+(-35) 解:原式=16+24+25)+(35)解:原式=16+24+(25)+35律) (运用了交换律) (运用了交换和结 =40+(-25)+(35) =40+(-60) =15+(-35) 20 20 讨论:你认为那种解法简便?为什么?
三、研读课文 知识点二 加法运算律的应用(使计算简便) 例2计算16+(-25)+24+(-35) 解法1:16+(-25)+24+(-35) 解法2: 16+(-25)+24+(-35) 解:原式 =16+24+(-25)+(-35) 解 :原式=16+24+[(-25)+(-35)] (运用了______ 律) (运用了__________ 律) =40+(-25)+(-35 ) =40+(-60) =15+(-35) =-20 =-20 交换 交换和结合 讨论:你认为那种解法简便?为什么? 认真阅读课本第19页至第20页的内容,完成下面练习, 并体验知识点的形成过程
研读课文 练一练 用简便方法计算下列题目 (1)(-23)+58+(-17) (2) -+ 解:原式=+[+] (3)34+(-25)+54+(-8 (4)(-2)+3+1+(-3)+2+(-4
三、研读课文 练一练 用简便方法计算下列题目: (1)(-23)+58+(-17); 解:原式= +[ + ] = = (3) (4)(-2)+3+1+(-3)+2+(-4) + + 6 1 3 1 2 1 (2)、- - ) 5 2 ( 8 4 3 ) 5 5 3 ( 2 4 1 3 + − + + −
研读课文 练一练 用简便方法计算下列题目: (1)(-23)+58+(-17) (2) 解:原式=58+[(23)+(-17 解:原式 =58+(-40) 2 =18 3 (3)31+(-23)+53+(-82)(4)(-2)+3+1+(-3)+2+(-4) 解:原式 解:原式=[(-2)+(3)+(-4)+(3+1+2 (-9)+6 =9+(-11) 3 2 讨论:你的解法是 否最简便?为什么?
三、研读课文 练一练 用简便方法计算下列题目: (1)(-23)+58+(-17); 解:原式=58+[(-23)+(-17)] =58+(-40) =18 (3) (4)(-2)+3+1+(-3)+2+(-4) 解:原式=[(-2)+(-3)+(-4)]+(3+1+2) =(-9)+6 =9+(-11) =-3 =-2 + + 6 1 3 1 2 1 (2)、- - ) 5 2 ( 8 4 3 ) 5 5 3 ( 2 4 1 3 + − + + − 3 1 6 1 - 2 1 - + + 解:原式 = 3 1 3 2 + = − 3 1 = − + + = + 5 2 - 8 5 3 - 2 4 3 5 4 1 解:原式 3 讨论:你的解法是 否最简便?为什么?
归纳:通过以上练习,我们可以发现: 利用加法交换律、结合律可以简化计算,根据加数的 特点,可以采用以下方法: (1)同号的加数放在一起相加; (2)同分母的加数放在一起相加; (3)和为0的加数放在一起相加; (4)和为整数的加数放在一起相加
归纳:通过以上练习,我们可以发现: 利用加法交换律、结合律可以简化计算,根据加数的 特点,可以采用以下方法: (1)同号的加数放在一起相加; (2)同分母的加数放在一起相加; (3)和为0的加数放在一起相加; (4)和为整数的加数放在一起相加.
研读课文 知识点三加法运算律在实际问题的应用 例310袋小麦称后记录如下,10袋小麦一共多少千克?如果每 袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足 多少千克?(你能有几种不同的计算方法) 919191.58991.291.388.788.891.891.1 解法1:10袋小麦一共+91+915+89+92+91.3+887+88918+911=905午克 如果每袋小麦是90克,那么10袋小麦一共是90x10=900千克; 则10袋小麦总计超过(不足054-900=54千克 解法2:每袋小麦超过90kg的千克数计作正数,不足的千克数记作负数,10袋小麦对应 数分别+1、+1、+1.5、1、+12、+1.3、-13、-1.2、+1.8、+1.1 1+1+1.5+(-1)+12+13+(-1.3)+(-1.2)+18+1.1 1+(-1)+1.2+(-1.2)]+[1.3+(-1.3)+(1+1.5+1.8+11)思考:比较两种解法 5.4 90×10+54=9054 解法2使用了 答:10袋小麦一共9054kg;总计超过54kg
三、研读课文 知识点三 加法运算律在实际问题的应用 例3 10袋小麦称后记录如下,10袋小麦一共多少千克?如果每 袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足 多少千克? (你能有几种不同的计算方法) 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1 解法1:10袋小麦一共有______________________________________千克; 如果每袋小麦是90克,那么10袋小麦一共是____________千克; 则10袋小麦总计超过(不足) _________ 千克. 90x10=900 905.4-900=5.4 解法2:每袋小麦超过90kg的千克数计作正数,不足的千克数记作负数,10袋小麦对应的 数分别_________________________________________________ +1、+1、+1.5、-1、+1.2、+1.3、-1.3、-1.2、+1.8、+1.1 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1 = = 90×10+ = 答:10袋小麦一共 _____ kg ;总计_______。 [1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1) 5.4 905.4 超过5.4kg 5.4 905.4 思考:比较两种解法, 解法2中使用了 哪些运算律?