方法(一)一一简单随机抽样 教学目的:1.理解简单随机抽样的概念 2会用简单随机抽样(抽签法、随机数表法)从总体中抽取样本 教学重点:简单随机抽样的概念.抽签法、随机数表法 教学难点:进行简单随机抽样时,“每次抽取一个个体时任一个体a被抽到的概率” 与“在整个抽样过程中个体a被抽到的概率”的不同 教学过程 、复习回顾、创设情境: (1)在一次考试中,考生有2万名,为了得到这些考生的数学平均成绩,将他们的 成绩全部相加再除以考生总数,那将是十分麻烦的,怎样才能了解到这些考生的 数学平均成绩呢 (2)现有某灯泡厂生产的灯泡10000只,怎样才能了解到这批灯泡的使用寿命呢? 要解决这两个问题,就需要掌握一些统计学知识.在初中阶段,我们学习过一些 统计学初步知识,了解了统计学的一些基本概念.学习了总体、个体、样本、样本 的容量、总体平均数、样本平均数的意义 在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做 个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫 做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平 均数叫做样本平均数 统计学的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据 样本的情况去估计总体的相应情况.因此,样本的抽去是否得当,对于研究总体 来说就十分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映 总体的情况?本节课开始,我们就来学习几种常用的抽样方法 二、基础知识学习与研究 假定一个小组有6个学生,要通过逐个抽取的方法从中取3个学生参加一项活动 第1次抽取时每个被抽到的概率是?(),第2次抽取时,余下的每个被抽到的 概率都是?(),第3次抽取时,余下的每个被抽到的概率都是?()。这样的 抽样就是简单随机抽样 般地,设一个总体的个体总数为n,如果通过逐个抽取的方法从中抽取样本,且 每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样 每次抽取时各个个体被抽到的概率是相等的,那么在整个抽样过程中每个个体被 抽到的概率是否确实相等? 例如,从含有6个体的总体中抽取一个容量为2的样本,在整个抽样过程中,总 体中的任意一个个体,在第一次抽取时,它被抽到的概率是?();若它第1次 未被抽到而第2次被抽到的概率是?()。 由于个体第1次被抽到与第2次被抽到是?(填互斥,独立)事件,根据互斥事 件的概率加法公式,在整个抽样过程中,个体被抽到的概率p=?(+=) 又由于个体的任意性,说明在抽样过程中每个体被抽到的概率相等,都是?() 事实上:用简单随机抽样的方法从个体数为n的总体中逐次抽取一个容量为的样 本,那么每个个体被抽到概率都等于 由于简单随机抽样体现了抽样的客观性和公平性,且这种抽样方法比较简单,所 以成为一种基本的抽样方法
方法(一)――简单随机抽样 教学目的:1.理解简单随机抽样的概念. ⒉会用简单随机抽样(抽签法、随机数表法)从总体中抽取样本 教学重点:简单随机抽样的概念.抽签法、随机数表法 教学难点:进行简单随机抽样时,“每次抽取一个个体时任一个体 a 被抽到的概率” 与“在整个抽样过程中个体 a 被抽到的概率”的不同 教学过程: 一、复习回顾、创设情境: ⑴在一次考试中,考生有 2 万名,为了得到这些考生的数学平均成绩,将他们的 成绩全部相加再除以考生总数,那将是十分麻烦的,怎样才能了解到这些考生的 数学平均成绩呢? ⑵现有某灯泡厂生产的灯泡 10000 只,怎样才能了解到这批灯泡的使用寿命呢? 要解决这两个问题,就需要掌握一些统计学知识.在初中阶段,我们学习过一些 统计学初步知识,了解了统计学的一些基本概念.学习了总体、个体、样本、样本 的容量、总体平均数、样本平均数的意义: 在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做 个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫 做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平 均数叫做样本平均数. 统计学的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据 样本的情况去估计总体的相应情况.因此,样本的抽去是否得当,对于研究总体 来说就十分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映 总体的情况?本节课开始,我们就来学习几种常用的抽样方法 二、基础知识学习与研究: 假定一个小组有 6 个学生,要通过逐个抽取的方法从中取 3 个学生参加一项活动, 第 1 次抽取时每个被抽到的概率是?( ),第 2 次抽取时,余下的每个被抽到的 概率都是?( ),第 3 次抽取时,余下的每个被抽到的概率都是?( )。这样的 抽样就是简单随机抽样。 一般地,设一个总体的个体总数为 n,如果通过逐个抽取的方法从中抽取样本,且 每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。 每次抽取时各个个体被抽到的概率是相等的,那么在整个抽样过程中每个个体被 抽到的概率是否确实相等? 例如,从含有 6 个体的总体中抽取一个容量为 2 的样本,在整个抽样过程中,总 体中的任意一个个体 ,在第一次抽取时,它被抽到的概率是?( );若它第 1 次 未被抽到而第 2 次被抽到的概率是?( )。 由于个体 第 1 次被抽到与第 2 次被抽到是?(填互斥,独立)事件,根据互斥事 件的概率加法公式,在整个抽样过程中,个体 被抽到的概率 p=?( + = )。 又由于个体 的任意性,说明在抽样过程中每个体被抽到的概率相等,都是?( )。 事实上:用简单随机抽样的方法从个体数为 n 的总体中逐次抽取一个容量为 的样 本,那么每个个体被抽到概率都等于 。 由于简单随机抽样体现了抽样的客观性和公平性,且这种抽样方法比较简单,所 以成为一种基本的抽样方法
如何实施简单抽样呢?下面介绍两种常用方法 (1)抽签法 先将总体中的所有个体编号(号码可以从1到n),并把号码写在形状、大小相同 的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子 里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取次,就得到一个 容量为的样本,对个体编号时,也可以利用己有的编号,例如从全班学生中抽取 样本时,可以利用学生的学号、座位号等。 抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。 (2)随机数表法 下面举例说明如何用随机数表来抽取样本 为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,在利用随机 数表抽取这个样本时,可以按下面的步骤进行: 第一步,先将40件产品编号,可以编为00,01,02,,38,39 第二步,在附录1随机数表中任选一个数作为开始,例如从第8行第5列的数59 开始,为便于说明,我们将附录1中的第6行至第10行摘录如下 162277943949544354821737932378873520964384263491 844217533157245506887704744767217633502583921206 76 630163785916955567199810507175128673580744395238 332112342978645607825242074438155100134299660279 576086324409472796544917460962905284772708027343 第三步,从选定的数59开始向右读下去,得到一个两位数字号码59,由于59> 39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到 9,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出 将它去掉,再继续下去,得到34。至此,10个样本号码已经取满,于是,所要抽 取的样本号码是 16191012073938332134 注将总体中的n个个体编号时可以从0开始,例如n=100时编号可以是 00,01,02,99,这样总体中的所有个体均可用两位数字号码表示,便于运用随机 数表。 当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等 在上面每两位、每两位地读数过程中,得到一串两位数字号码,在去掉其中不合 要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取 各个个体的号码。由于随机数表中每个位置上出现哪一个数字是等概率的,每 次读到哪一个两位数字号码,即从总体中抽到哪一个个体的号码也是等概率的 因而利用随机数表抽取样本保证了各个个体被抽取的概率相等。 知识应用与解题研究 例1对总数为n的一批零件抽取一个容量为30的样本,若每个零件被抽到的概 率为0.25,则n的值为()
如何实施简单抽样呢?下面介绍两种常用方法 (1)抽签法 先将总体中的所有个体编号(号码可以从 1 到 n),并把号码写在形状、大小相同 的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子 里,进行均匀搅拌,抽签时,每次从中抽出 1 个号签,连续抽取 次,就得到一个 容量为 的样本,对个体编号时,也可以利用已有的编号,例如从全班学生中抽取 样本时,可以利用学生的学号、座位号等。 抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。 (2)随机数表法 下面举例说明如何用随机数表来抽取样本。 为了检验某种产品的质量,决定从 40 件产品中抽取 10 件进行检查,在利用随机 数表抽取这个样本时,可以按下面的步骤进行: 第一步,先将 40 件产品编号,可以编为 00,01,02, ,38,39。 第二步,在附录 1 随机数表中任选一个数作为开始,例如从第 8 行第 5 列的数 59 开始,为便于说明,我们将附录 1 中的第 6 行至第 10 行摘录如下。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28 第三步,从选定的数 59 开始向右读下去,得到一个两位数字号码 59,由于 59> 39,将它去掉;继续向右读,得到 16,将 它取出; 继续下 去, 又 得 到 19,10,12,07,39,38,33,21,随后的两位数字号码是 12,由于它在前面已经取出, 将它去掉,再继续下去,得到 34。至此,10 个样本号码已经取满,于是,所要抽 取的样本号码是 16 19 10 12 07 39 38 33 21 34 注 将总体中的 n 个个体编号时可以从 0 开始,例如 n=100 时编号可以是 00,01,02, 99,这样总体中的所有个体均可用两位数字号码表示,便于运用随机 数表。 当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等 等。 在上面每两位、每两位地读数过程中,得到一串两位数字号码,在去掉其中不合 要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取 的各个个体的号码。由于随机数表中每个位置上出现哪一个数字是等概率的,每 次读到哪一个两位数字号码,即从总体中抽到哪一个个体的号码也是等概率的。 因而利用随机数表抽取样本保证了各个个体被抽取的概率相等。 三、知识应用与解题研究: 例 1 对总数为 n 的一批零件抽取一个容量为 30 的样本,若每个零件被抽到的概 率为 0.25,则 n 的值为( )
解:因为从含有n个个体的总体中抽取一个容量为30的样本时,每次抽取一个个 体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为; 所以=0.25,从而有n=120.故选a 四、巩固练习:p7练习1、2 五、总结提炼:统计的基本思想,简单随机抽样,什么样的总体适宜用简单随机抽 样,如何用抽签法或随机数表法获取样本简单随机抽样的常用方法:()抽签法 (②)随机数表法简单随机抽样是不放回抽样,是一种等概率抽样方法 六、课后作业:p9习题1-3 七、检验反馈: 大1.下列说法正确的是: (a)甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样 (b)期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班 (d)期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班 比乙班好 2.一组数据的方差是,将这组数据中的每一个数据都乘以2,所得到的一组数据 的方差是() d 3.从某鱼池中捕得1200条鱼,做了记号之后,再放回池中,经过适当的时间后, 再从池中捕得1000条鱼,计算其中有记号的鱼为100条,试估计鱼池中共有鱼的 条数为() 4.(1)已知一组数据1,2,1,0,-1,-2,0,-1,则这组数数据的平均数为 方差为 (2)若5,-1,-2,x的平均数为1,则x= (3)已知n个数据的和为56,平均数为8,则n= (4)某商场4月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8, 3.2,3.4,3.7,3.0,3.1,试估算该商场4月份的总营业额,大约是万元 抽样方法(二)一一分层抽样 教学目的:1理解分层抽样的概念:2.会用分层抽样从总体中抽取样本 教学重点:分层抽样概念的理解及实施步骤 教学难点:分层抽样从总体中抽取样本 教学过程 复习回顾:简单随机抽样、系统抽样 二、基础知识学习与研究: 个单位的职工有500人,其中不到35岁的有125人,35岁至49岁的有280人, 50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中 抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取? 为了使抽出的100名职工更充分地反映单位职工的整体情况,在各个年龄段可按 这部分职工人数与职工总数的比进行抽样。 因为抽取人数与职工总数的比为100:500=1:5 所以在各年龄段抽取的职工人数依次是即25,56,19 在各个年龄段分别抽取时,可采用前面介绍的简单随机抽样的方法,将各年龄段
解:因为从含有 n 个个体的总体中抽取一个容量为 30 的样本时,每次抽取一个个 体时任一个体被抽到的概率为 ;在整个抽样过程中各个个体被抽到的概率为 ; 所以 =0.25,从而有 n=120. 故选 a 四、巩固练习:p7 练习 1、2 五、总结提炼:统计的基本思想,简单随机抽样,什么样的总体适宜用简单随机抽 样,如何用抽签法或随机数表法获取样本 简单随机抽样的常用方法:⑴抽签法、 ⑵随机数表法 简单随机抽样是不放回抽样,是一种等概率抽样方法. 六、课后作业:p9 习题 1-3 七、检验反馈: * 1 . 下列说法正确的是: (a)甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样 (b)期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班 好 (d)期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班 比乙班好 2. 一组数据的方差是 ,将这组数据中的每一个数据都乘以 2,所得到的一组数据 的方差是( ) a. ; b. ; c. ; d. 3.从某鱼池中捕得 1200 条鱼,做了记号之后,再放回池中,经过适当的时间后, 再从池中捕得 1000 条鱼,计算其中有记号的鱼为 100 条,试估计鱼池中共有鱼的 条数为( ) 4. (1)已知一组数据 1,2,1,0,-1,-2,0,-1,则这组数数据的平均数为 ; 方差为 ; (2)若 5,-1,-2,x 的平均数为 1,则 x= ; (3)已知 n 个数据的和为 56,平均数为 8,则 n= ; (4)某商场 4 月份随机抽查了 6 天的营业额,结果分别如下(单位:万元):2.8, 3.2,3.4,3.7,3.0,3.1,试估算该商场 4 月份的总营业额,大约是__万元。 抽样方法(二)――分层抽样 教学目的:1 理解分层抽样的概念;2.会用分层抽样从总体中抽取样本 教学重点:分层抽样概念的理解及实施步骤 教学难点:分层抽样从总体中抽取样本 教学过程: 一、复习回顾:简单随机抽样、系统抽样。 二、基础知识学习与研究: 一个单位的职工有 500 人,其中不到 35 岁的有 125 人,35 岁至 49 岁的有 28 0 人, 50 岁以上的有 95 人,为了了解这个单位职工与身体状况有关的某项指标,要从中 抽取 100 名职工作为样本,职工年龄与这项指标有关,应该怎样抽取? 为了使抽出的 100 名职工更充分地反映单位职工的整体情况,在各个年龄段可按 这部分职工人数与职工总数的比进行抽样。 因为抽取人数与职工总数的比为 100 :500=1 :5 所以在各年龄段抽取的职工人数依次是 即 25,56,19 在各个年龄段分别抽取时,可采用前面介绍的简单随机抽样的方法,将各年龄段
抽取的职工合在一起,就是所要抽取的100名职工。 像这样当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的 情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽取叫做 分层抽样,其中所分成的各部分叫做层 可以看到,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体 的个体数的比,分层抽样时,每一个个体被抽到的概率都是相等的。 由于分层抽样充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样 时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着广泛的 应用。 以上我们简单介绍了简单随机抽样和分层抽样,这两种抽样方法的共同特点是: 在整个抽样过程中每个个体被抽取的概率相等。简单随机抽样是最基本的抽样方 法,当总体由差异明显的几部分组成,采取分层抽样时,其中各层的抽样常采用 简单随机抽样 三、知识应用与解题研究: 例1某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状 况的某项指标,需从他们中间抽取一个容量为36样本,适合的抽取样本的方法是 a.简单的随机抽样b.系统抽样 例2一个单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280 人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,如 何从中抽取一个容量为100的样本? 解:由于职工年龄与这项指标有关,故适于用分层抽样,抽样过程如下: (1)确定样本容量与总体的个体数之比100:500=1:5: (2)利用抽样比确定各年龄段应抽取的个体数,依次为 ,,,即25,56,19 (3)利用简单随机抽样或系统抽样的方法,在各年龄段分别抽取25,56,19人,然 后合在一起,就是所要抽取的样本 说明:①分层抽样适用于总体由差异比较明显的几个部分组成的情况,是等概率 抽样,它也是客观的、公平的 ②分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已 知信息,使样本具有较好的代表性,而且在各层抽样时可以根据情况采用不同的 抽样方法,因此在实践中有着非常广泛的应用 例3某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员 21人.为了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样 方法中,依简单随机抽样、系统抽样、分层抽样顺序的是( 方法1:将140人从1~140编号,然后制作出有编号1~140的140个形状、大 小相同的号签,并将号签放人同一箱子里进行均匀搅拌,然后从中抽取20个号签, 编号与签号相同的20个人被选出 方法2:将140人分成20组,每组7人,并将每组7人按1—7编号,在第一组采 用抽签法抽出号(1≤≤7),则其余各组尾号也被抽到,20个人被选出 方法3:按20:140=1:7的比例,从教师中抽取13人,从教辅行政人员中抽取4 人,从总务后勤人员中抽取3人.从各类人员中抽取所需人员时,均采用随机数 表法,可抽到20个人 a.方法2,方法1,方法3b.方法2,方法3,方法1
抽取的职工合在一起,就是所要抽取的 100 名职工。 像这样当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的 情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽取叫做 分层抽样,其中所分成的各部分叫做层。 可以看到,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体 的个体数的比,分层抽样时,每一个个体被抽到的概率都是相等的。 由于分层抽样充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样 时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着广泛的 应用。 以上我们简单介绍了简单随机抽样和分层抽样,这两种抽样方法的共同特点是: 在整个抽样过程中每个个体被抽取的概率相等。简单随机抽样是最基本的抽样方 法,当总体由差异明显的几部分组成,采取分层抽样时,其中各层的抽样常采用 简单随机抽样。 三、知识应用与解题研究: 例 1 某单位有老年人 28 人,中年人 54 人,青年人 81 人,为了调查他们的身体状 况的某项指标,需从他们中间抽取一个容量为 36 样本,适合的抽取样本的方法是 ( ) a. 简单的随机抽样 b. 系统抽样 例 2 一个单位有 500 名职工,其中不到 35 岁的有 125 人,35 岁~49 岁的有 280 人,50 岁以上的有 95 人.为了了解这个单位职工与身体状况有关的某项指标,如 何从中抽取一个容量为 100 的样本? 解:由于职工年龄与这项指标有关,故适于用分层抽样,抽样过程如下: ⑴确定样本容量与总体的个体数之比 100:500=1:5; ⑵利用抽样比确定各年龄段应抽取的个体数,依次为 , , ,即 25,56,19. ⑶利用简单随机抽样或系统抽样的方法,在各年龄段分别抽取 25,56,19 人,然 后合在一起,就是所要抽取的样本. 说明:①分层抽样适用于总体由差异比较明显的几个部分组成的情况,是等概率 抽样,它也是客观的、公平的; ②分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已 知信息,使样本具有较好的代表性,而且在各层抽样时可以根据情况采用不同的 抽样方法,因此在实践中有着非常广泛的应用. 例 3 某学校有职工 140 人,其中教师 91 人,教辅行政人员 28 人,总务后勤人员 21 人. 为了解职工的某种情况,要从中抽取一个容量为 20 的样本.以下的抽样 方法中,依简单随机抽样、系统抽样、分层抽样顺序的是 ( ) 方法 1:将 140 人从 1~140 编号,然后制作出有编号 1~140 的 140 个形状、大 小相同的号签,并将号签放人同一箱子里进行均匀搅拌,然后从中抽取 20 个号签, 编号与签号相同的 20 个人被选出; 方法 2:将 140 人分成 20 组,每组 7 人,并将每组 7 人按 1—7 编号,在第一组采 用抽签法抽出 号(1≤ ≤7),则其余各组尾号也被抽到,20 个人被选出; 方法 3:按 20:140=1:7 的比例,从教师中抽取 13 人,从教辅行政人员中抽取 4 人,从总务后勤人员中抽取 3 人.从各类人员中抽取所需人员时,均采用随机数 表法,可抽到 20 个人. a.方法 2,方法 1,方法 3 b.方法 2,方法 3,方法 1
四、巩固练习:p8练习:1-3 ★1.统计某区的高考成绩,在总数为3000人的考生中,省重点中学毕业生有 300人,区重点中学毕业生有900人,普通中学毕业生有1700人,其他考生有100 人.从中抽取一个容量为300的样本进行分析,各类考生要分别抽取多少人? 2.某农场在三块地种植某种试验作物,其中平地种有150亩,河沟地种有30亩, 坡地种有90亩.现从中抽取一个容量为18的样本,各类地要分别抽取多少亩? 3.一个工厂有若干车间,今采用分层抽样方法从全厂某天的2048件产品中抽取 个容量为128的样本进行质量检查.若一车间这一天生产256件产品,则从该 车间抽取的产品件数为 答案:1.省重点中学抽取30人,区重点中学抽取90人,普通中学抽取170人 其他考生抽取10人2.平地抽取10亩,河沟地抽取2亩,坡地抽取6亩。3. 五、总结提炼:了解分层抽样的概率,会用分层抽样从总体中抽取样本。 、课后作业:p9:4、5 总体分布的估计 教学目的:1了解当总体中的个体取不同数值很少时,可用频率分布表或频率分 布条形图估计总体分布,并会用这两种方式估计总体分布; 2了解当总体中的个体取不同数值较多,甚至无限时,可用频率分布表或频率分 布直方图估计总体分布,并会用这两种方式估计总体分布 教学重点:用样本的频率分布估计总体分布 教学难点:频率分布表和频率分布直方图的绘制 教学过程: 、复习回顾:频率分布 二、探索研究 阅读p9倒1段后的例1,思考怎样进行总体分布的估计。 例1为了了解某地区高三学生的身体发育情况,抽查了地区内100名年龄为17.5 岁一18岁的男生的体重情况,结果如下(单位:kg) 61.5
四、巩固练习:p8 练习:1-3 *1 . 统计某区的高考成绩,在总数为 3000 人的考生中,省重点中学毕业生有 300 人,区重点中学毕业生有 900 人,普通中学毕业生有 1700 人,其他考生有 100 人.从中抽取一个容量为 300 的样本进行分析,各类考生要分别抽取多少人? 2. 某农场在三块地种植某种试验作物,其中平地种有 150 亩,河沟地种有 30 亩, 坡地种有 90 亩.现从中抽取一个容量为 18 的样本,各类地要分别抽取多少亩? 3. 一个工厂有若干车间,今采用分层抽样方法从全厂某天的 2048 件产品中抽取 一个容量为 128 的样本进行质量检查.若一车间这一天生产 256 件产品,则从该 车间抽取的产品件数为________ 答案:1. 省重点中学抽取 30 人,区重点中学抽取 90 人,普通中学抽取 170 人, 其他考生抽取 10 人 2. 平地抽取 10 亩,河沟地抽取 2 亩,坡地抽取 6 亩。3. 16 五、总结提炼:了解分层抽样的概率,会用分层抽样从总体中抽取样本。 六、课后作业:p9:4、5 总体分布的估计 教学目的:1 了解当总体中的个体取不同数值很少时,可用频率分布表或频率分 布条形图估计总体分布,并会用这两种方式估计总体分布; ⒉了解当总体中的个体取不同数值较多,甚至无限时,可用频率分布表或频率分 布直方图估计总体分布,并会用这两种方式估计总体分布 教学重点:用样本的频率分布估计总体分布 教学难点:频率分布表和频率分布直方图的绘制 教学过程: 一、复习回顾:频率分布 二、探索研究: 阅读 p9 倒 1 段后的例 1,思考怎样进行总体分布的估计。 例 1 为了了解某地区高三学生的身体发育情况,抽查了地区内 100 名年龄为 17.5 岁-18 岁的男生的体重情况,结果如下(单位:kg) 56.5 69.5 65 61.5
76 58.5 73.5 57.5
64.5 66.5 64 64.5 76 58.5 72 73.5 56 67 70 57.5 65.5 68
62.5 64.5
71 75 62 68.5 62.5 66 59.5 63.5 64.5 67.5 73 68 55 72
66.5 62.5
66.5 74 63 60 55.5 70 64.5 58 64 70.5 57 62.5 65 69
71.5 63.5 74.5
71.5 73 62 58 76 71 66 63.5 56 59.5 63.5 65 70 74.5
68.5 72.5 71.5
68.5 64 55.5 72.5 66.5 68 76 57.5 60 71.5 57 69.5 74 64.5 59