2016-2017学年度学年教学质量检查 八年级数学试卷 、选择题(每小题3分,共30分,请把正确选项填在相应题号下的空格里) 1.不等式x-3>0的解集是 B.x3 2.使分式 有意义的条件是() A.x≠2 3.下列各式中,能用平方差公式分解因式的是() A x+y B x-y C.-x2-y2 4.下列变形中,正确的是() 2b22b atab a a b a+b 5.计算xyx 的结果是() 6.下列图形是中心对称图形,但不是轴对称图形的是 D 7.如图,四边形ABCD中,对角线AC、BD相交于点O, 下列条件不能判定这个四边形是平行四边形的是() A.AB∥DC.AD∥BC.B.AB∥DC.AD=BC C. AO=CO BO=DO D AB=DC.AD=BC
2016--2017 学年度学年教学质量检查 八年级数学试卷 一、选择题(每小题 3 分,共 30 分,请把正确选项填在相应题号下的空格里) 1. 不等式 x-3>0 的解集是( ) A. x>-3 B. x3 D. x2 D. x<2 3. 下列各式中,能用平方差公式分解因式的是( ) A. x2+y2 B. x2 -y 2 C. -x 2 -y 2 D. x-y 2 4. 下列变形中,正确的是( ) A. a a 1 −1 − = B. a b a + b + = 1 1 1 C. a b a 2b 2 2 2 = D. b a b ab a ab = + + 5. 计算 x y xy x y x y − − 2 的结果是( ) A. x 1 B. y x C.y D.x 6.下列图形是中心对称图形,但不是轴对称图形的是( ) 7.如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O, 下列条件不能判定这个四边形是平行四边形的是( ) A. AB∥DC, AD∥BC. B. AB∥DC, AD=BC C. AO=CO,BO=DO D.AB=DC,AD=BC B O D C A
座位号 8正八边形的每一个内角的度数为:() B.600 C.120° D.1350 9如图,Rt△ABC中,∠C=909,AB的垂直平分线DE交AC于点E, B 连接BE,若∠A=40,则∠CBE的度数为() 0如图,平行四边形ABCD中,E是AB上一点,DE、CED是 LADC/CI平△ 线,若AD=5,DE=6,则平行四边形的面积为() B.48 C.60 D E 二、填空题(每小题3分,共18分) 11分解因式x2-8x+16 12如图,已知△ABC中,AB=AC,AD平分∠BACE是AB的中点,若AA则DE的 长为 13不等式组{2 的解集是 2x)0 14化简 15.如图,在平行四边形ABCD中,对角线AC与BD相交于点AD⊥AD,AD=6,AB=10, 则△AOB的面积为 16如图,在△ABC中,AC=BC=2,∠C=90,AD是△ABC的角平分线,DE⊥AB,垂足
8.正八边形的每一个内角的度数为:( ) A.450 B.600 C.1200 D. 1350 9.如图,Rt△ABC 中,∠C=900,AB 的垂直平分线 DE 交 AC 于点 E, 连接 BE,若∠A=400,则∠CBE 的度数为( ) A. 100 B.150 C.200 D.250 10.如图,平行四边形 ABCD 中,E 是 AB 上一点,DE、CE 分别是∠ADC、∠BCD 的平分 线,若 AD=5,DE=6,则平行四边形的面积为( ) A.96 B.48 C. 60 D. 30 二、填空题(每小题 3 分,共 18 分) 11.分解因式 x 2 -8x+16= . 12.如图,已知△ABC 中,AB=AC,AD 平分∠BAC,E 是 AB 的中点,若 AC=6,则 DE 的 长为 . 13.不等式组 − 6 2 0 1 2 1 x x 的解集是 . 14.化简 = − • + − 2 1 2 4 2 2 a a a a . 15.如图,在平行四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,BD⊥AD,AD=6,AB=10, 则△AOB 的面积为 . 16.如图,在△ABC 中,AC=BC=2,∠C=900,AD 是△ABC 的角平分线,DE⊥AB,垂足 座位号 A E D C B B D C E A F E B C G D A D A C B E O B C A D
为E,AD的垂直平分线交AB于点F,则DF的长为 解答题(每小题5分,共15分) 17分解因式:4x2-4 2x≤x+2 18解不等式组:{x-1 并把它的解集在数轴上表示出来。 2(x+l 19解方程 +1= 四、解答题(每小题7分,共21分) 20先化简,再求值:(1--) x+1,其中x=-1
为 E,AD 的垂直平分线交 AB 于点 F,则 DF 的长为 . 三、解答题(每小题 5 分,共 15 分) 17.分解因式: 4x2 -4 18.解不等式组: + − + 1 2 1 2 2 x x x x ,并把它的解集在数轴上表示出来。 19.解方程: x x x − + = − 3 3 1 3 四、解答题(每小题 7 分,共 21 分) 20.先化简,再求值: , 1 4 4 ) 1 3 (1 2 + − + + − x x x x 其中 x= 2 1 −
21某体育用品商场分别用10000元购进A种品牌、用7500元购进B种品牌的自行车进行 销售,已知B种品牌的自行车的进价比A种品牌的高50%所购进的A种品牌的自行车比B 种品牌的多10辆,求每辆A种品牌的自行车的进价。 22如图,平行四边形ABCD中,O是对角线BD的中点,过点O作直线EF分别交AD、 BC于点E、F,连结BE、DF,求证:四边形BEDF是平行四边形。 C
21.某体育用品商场分别用 10000 元购进 A 种品牌、用 7500 元购进 B 种品牌的自行车进行 销售,已知 B 种品牌的自行车的进价比 A 种品牌的高 50%,所购进的 A 种品牌的自行车比 B 种品牌的多 10 辆,求每辆 A 种品牌的自行车的进价。 22.如图,平行四边形 ABCD 中,O 是对角线 BD 的中点,过点 O 作直线 EF 分别交 AD、 BC 于点 E、F,连结 BE、DF,求证:四边形 BEDF 是平行四边形。 OO E D C F A B O
五、解答题(每小题8分,共16分) 23如图,△ABC中,AB=AC,线段BC的垂直平分线AD交BC于点D,ABE作BE∥ AC,交AD的延长线于点E,求证:AB=BE B E 24如图,△ABC与△DCE都是等腰直角三角形,其中AC=BCCD=CE,∠C∠D=E 点D在AB上,求证:AB⊥BE
五、解答题(每小题 8 分,共 16 分) 23.如图,△ABC 中,AB=AC,线段 BC 的垂直平分线 AD 交 BC 于点 D,过点 BE 作 BE∥ AC,交 AD 的延长线于点 E,求证:AB=BE 24.如图,△ABC 与△DCE 都是等腰直角三角形,其中 AC=BC,CD=CE,∠ACB=∠DCE =900 , 点 D 在 AB 上,求证:AB⊥BE E D A B C C D B E A
201 2017学年度教学质量检查 八年级数学参考解答 、选择题 题号 4 9 10 选项 A C B A 、填空题 11.(x-4)2 12.3 13.2-3 原不等式组的解集是:-3<x≤2 它的解集在数轴上表示为 3-2-1012 19解:原方程化为 x+x-3=3 ∴2x=0 经检验x=0是原方程的根 原方程的解是x=0 20解:(1--)÷ x+1 x+1-3x+1 x =x+1(x-2)
2016——2017学年度教学质量检查 八年级数学参考解答 一、选择题 二、填空题 11.(x-4)2 12. 3 13.2-3 原不等式组的解集是:-3<x≤2 它的解集在数轴上表示为: 19.解:原方程化为: x+x-3=-3 ∴2x=0 ∴x=0 经检验:x=0 是原方程的根 原方程的解是 x=0. 20 解: 1 4 4 ) 1 3 (1 2 + − + + − x x x x = 2 ( 2) 1 1 1 3 − + • + + − x x x x = 2 ( 2) 1 1 2 − + • + − x x x x 题号 1 2 3 4 5 6 7 8 9 10 选项 C A B A D C B D A B -3 -1 1 -2 2 0
21解:设每辆A种品牌的自行车的进价为x元则每辆B种品牌的自行车的进价 为(1+50%元依题意得:10007500 (1+50%) 化简得:500 解得:ⅹ=500 经检验x=500是原方程的的解 答每辆A种品牌自行车的进价为500元 22证明∷ABCD是平行四边形O是对角线BD的中点 ∴OB=OD,DE∥BF ∴∠EDO=∠FOB,∠EOD=∠FOB ∴△DOE≌△BO ∴OE=OF ∴四边形DEBF是平行四边形 23证明∴AB=AC,AD是∠BAC的平分线 ∴AD⊥BD.∠ABC=∠ACB ∵BE∥AC ∴∠ABD=∠ACB=∠EBD又BD=BD ∴Rt△ABD≌Rt△EBD 24.证明∴∵∠ACB=∠DCE=90° ∴∠ACD=909-∠DCB ∠BCE=90°-∠DCB ∴∠ACD=∠BCE ∴AC=BC,CD=CE ∴△ACD≌△BCE
= 2 1 x − 当 x= 2 1 − 时, 2 1 x − = 2 2 1 1 − − = 5 2 − 21.解:设每辆 A 种品牌的自行车的进价为 x 元,则每辆 B 种品牌的自行车的进价 为(1+50%)x 元,依题 意得: 10 (1 50%) 10000 7500 = + − x 化简得: 1 500 = x 解得:x=500 经检验:x=500 是原方程的的解 答:每辆 A 种品牌自行车的进价为 500 元. 22.证明:∵ABCD 是平行四边形,O 是对角线 BD 的中点 ∴OB=OD,DE∥BF. ∴∠EDO=∠FOB,∠EOD=∠FOB. ∴△DOE≌△BOF ∴OE=OF ∴四边形 DEBF 是平行四边形 23.证明:∵AB=AC,AD 是∠BAC 的平分线 ∴AD⊥BD,∠ABC=∠ACB ∵BE∥AC ∴∠ABD=∠ACB=∠EBD,又 BD=BD ∴Rt△ABD≌Rt△EBD ∴AB=EB 24.证明:∵∠ACB=∠DCE=900 ∴∠ACD=900 -∠DCB ∠BCE=900 -∠DCB ∴∠ACD=∠BCE. ∴AC=BC,CD=CE ∴△ACD≌△BCE
∴∠CBE=∠CAB=450 又∵∠ABC=45 ∴∠ABE=∠ABC+∠CBE =45°+45°=90 AB⊥BE
∴∠CBE=∠CAB=450 又∵∠ABC=450 ∴∠ABE=∠ABC+∠CBE =450 +450 =900 ∴AB⊥BE