免费下载网址ht:/ jiaoxue5uys168c0m/ 次函数的图象 课题 一次函数的图象 本课(章节)需13课时,本节课为第5课时,为本学期总第39课时 知识与技能:理解直线y=kx+b与y=kx之间的位置关系,使学生理解掌握并 会做出一次函数的图象。 教学目标过程与方法:通过一次函数的图象学习,体验数形结合法的应用,培养推理 及抽象思维能力。 情感态度与价值观:通过画函数图象并借助图象研究函数的性质,体验数与 形的内在联系,感受函数图象的简洁美 重点 作一次函数的图象 难点 对一次函数y=kx+b(k、b为常数)中k、b的数与形的联系的理解 教学方法观察、操作、猜想、 推理、类比、归纳 课型 教学过程 个案修改 复习旧知、导入新课 1、什么叫正比例函数、一次函数?它们之间有什么关系?2、正比例 函数的图象是什么形状? 3、正比例函数y=kx(k是常数,k≠0)中,k的正负对函数图像有什 么影响? 既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么 次函数的图象也会是一条直线吗?它们图象之间有什么关系? 、合作交流、解读探究 1、在同一直角坐标系内做出y=-2x、y=-2x+3、y=-2x-3的图像 归纳方法 我们知道两点确定一条直线,一次函数的图像是一条直线,常常把 次函数y=kx+b叫做直线y=kx+b。我们可以描两点做出一次函数的图 象,那么我们描那两点就可以了? 在一次函数y=kx+b(k,b为常数且k≠0)中,当x=0时,y=b:当x=1 那么我们取两点做一次函数的图象就可以取(0、b)和(1、k+b)两点 就可以了。因为一次函数y=kx+bk,b为常数,且k≠0)与x轴的 交点坐标为 与y轴的交点坐标为 也可确定一次函 数与坐标轴的交点坐标来画直线。 2、比一比这三个函数的图象有什么异同并回答下面的问题: (1)这三个函数的图象形状都是?倾斜程度是否一样? 归纳总结一次函数图象的特点: ①在一次函数y=kxb中 当k>0时,y随x的增大而增大,当b0时,直线必过 三象限;当K0时,直线必过一、三、四象限 当k<0时,y随x的增大而减小,当0时,直线必过一、二 四象限;当0时,直线必过二、三、四象限 解压密码联系qq1119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网 tt:jiaoxue5u.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com 一次函数的图象 课题 一次函数的图象 本课(章节)需 13 课时 ,本节课为第 5 课时,为本学期总第 39 课时 教学目标 知识与技能:理解直线 y=kx+b 与 y=kx 之间的位置关系,使学生理解掌握并 会做出一次函数的图象。 过程与方法:通过一次函数的图象学习,体验数形结合法的应用,培养推理 及抽象思维能力。 情感态度与价值观:通过画函数图象并借助图象研究函数的性质,体验数与 形的内在联系,感受函数图象的简洁美。 重点 作一次函数的图象 难点 对一次函数 y=kx+b(k、b 为常数)中 k、b 的数与形的联系的理解 教学方法 观察、操作、猜想、 推理、类比、归纳 课型 教具 教学过程: 一、复习旧知、导入新课 1、什么叫正比例函数、一次函数?它们之间有什么关系? 2、正比例 函数的图象是什么形状? 3、正比例函数 y=kx(k 是常数,k≠0)中,k 的正负对函数图像有什 么影响? 既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一 次函数的图象也会是一条直线吗? 它们图象之间有什么关系? 二、合作交流、解读探究 1、在同一直角坐标系内做出 y=-2x、y=-2x+3、y=-2x-3 的图像, 归纳方法: 我们知道两点确定一条直线,一次函数的图像是一条直线,常常把 一次函数 y=kx+b 叫做直线 y=kx+b。我们可以描两点做出一次函数的图 象,那么我们描那两点就可以了? 在一次函数 y=kx+b(k,b 为常数且 k ≠0)中,当 x=0 时,y=b;当 x=1 时,y=k+b。 那么我们取两点做一次函数的图象就可以取(0、b)和(1、k+b)两点 就可以了。因为一次函数 y=kx+b k,b 为常数,且 k ≠0)与 x 轴的 交点坐标为____,与 y 轴的交点坐标为____。也可确定一次函 数与坐标轴的交点坐标来画直线。 2、比一比这三个函数的图象有什么异同并回答下面的问题: (1)这三个函数的图象形状都是__?倾斜程度是否一样? 归纳总结一次函数图象的特点: ①在一次函数 y=kx+b 中 当 k 0 时, y 随 x 的增大而增大,当 b>0 时,直线必过一、二、 三象限;当 b0 时,直线必过一、二、 四象限;当 b<0 时,直线必过二、三、四象限. 个案修改
免费下载网址ht:/ jiaoxue5uys168c0m/ 再仔细观察,你能不能找到其他的信息? (讨论并填空) (2)函数y=-2x图象经过原点,一次函数y=-2x+3的图象与y轴 交于点 即它可以看作由直线y=-2x向平移单位长 度而得到 次函数y=-2x-3的图象与y轴交于点 ,即它可以看作由直 线y=-2x向平移单位长度而得到 (3)一次函数y=-2x+3与x轴的交点坐标为 ,与y轴的 交点坐标为 即它可以看作由直线y=-2x向平移 单位长度而得到 归纳总结一次函数图象的特点 ②一次函数y=kx+b(k,b为常数且k≠0)的图像可以看做由直线y=k 平移|b|个单位长度得到(当b>0时,向上平移:当b0时,k的值越大,直线与x轴的正方向所成的锐角越大 ④同一平面内,不重合的两条直线l1:y1=kx+b1与2:y2=k2x+b2 当k1=k2且b2≠b2时,l∥l2(若b=b则为同一条直线、或两直线重合) 当k1≠k2时,l与l2相交 三、应用迁移、巩固提高 例1、作出函数y=x-4的图象,并求它的图象与x轴、y轴所围成的 图形的面积.(学生自己画图解答) 例2、已知直线y=(5-3m)x+2m-4与直线y=1x6平行,求此直线的 解析式.分析:一次函数图像的性质,两直线平行即k相等,b不相等 解:略 例3、小明骑车从家到学校,假设途中他始终保持相同的速度前进,那 么小明离家的距离与他骑行时间的图象是下图中的 小明离学校 的距离与他骑行时间的图象是下图中的 s(千米) 分) 例4一次数y=mx+n的图象赞图所示,则下列结论正确的是() (Am0 (C)m>0,n>0(Dm>0,n0时,y的值随x的增大而增大,图象经过一、三象限 当k<0时,y的值随x的增大而减小,图象经过二、四象限 解压密码联系qq1119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网 tt:jiaoxue5u.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com 再仔细观察,你能不能找到其他的信息? (讨论并填空) (2)函数 y=-2x 图象经过原点,一次函数 y=-2x+3 的图象与 y 轴 交于点____,即它可以看作由直线 y=-2x 向__平移__单位长 度而得到; 一次函数 y=-2x-3 的图象与 y 轴交于点____,即它可以看作由直 线 y=-2x 向__平移__单位长度而得到; (3)一次函数 y=-2x+3 与 x 轴的交点坐标为 ____ ,与 y 轴的 交点坐标为____ ,即它可以看作由直线 y=-2x 向__平移__ 单位长度而得到。 归纳总结一次函数图象的特点: ②一次函数 y=kx+b(k,b 为常数且 k ≠0)的图像可以看做由直线 y=kx 平移|b|个单位长度得到(当 b>0 时,向上平移;当 b0 时,k 的值越大,直线与 x 轴的正方向所成的锐角越大. ④同一平面内,不重合的两条直线 1 1 1 1 l : y = k x +b 与 2 2 2 2 l : y = k x +b 当 1 2 k = k 且 b1≠b2 时, 1 2 l // l (若 b1 =b2 则为同一条直线、或两直线重合) 当 1 2 k k 时, 1 l 与 2 l 相交. 三、应用迁移、巩固提高 例 1、作出函数 y= 3 4 x-4 的图象,并求它的图象与 x 轴、y 轴所围成的 图形的面积.(学生自己画图解答) 例 2、已知直线 y=(5-3m)x+ 3 2 m-4 与直线 y= 2 1 x+6 平行,求此直线的 解析式.分析:一次函数图像的性质,两直线平行即 k 相等,b 不相等。 解:略 例 3、小明骑车从家到学校,假设途中他始终保持相同的速度前进,那 么小明离家的距离与他骑行时间的图象是下图中的 ;小明离学校 的距离与他骑行时间的图象是下图中的 . 例 4 一次函数 y = mx + n 的图象如图所示,则下列结论正确的是( ) (A)m 0, n 0 (B)m 0, n 0 (C)m 0, n 0 (D)m 0, n 0 例 5、(教材 P126 页 例 4) 学生自学。 练习:教材 P127 页 练习 1、2 题 四、全课小结 本节课我们结合一次函数的图象对一次函数的一些简单性质进行 了探讨,通过这节课,我们学习了以下内容: 1.一次函数 y = kx + b 中, 当 k 0 时, y 的值随 x 的增大而增大,图象经过一、三象限; 当 k 0 时, y 的值随 x 的增大而减小,图象经过二、四象限. O x y t (分) s (米) s (米) O t (分) (A) O (B) 5 15 (C) s (千米) O 15 5 t (分) (C) s (千米) O t (分) 5 15
免费下载网址htt: Jiaoxie5uys68com/ 2.同一平面内,不重合的两条直线4:y1=kx+b1与l2:y2=k2x+b2 当k1=k2时,l∥l2;当k1≠k2时,与l2相交 3.一次函数y=kx+b(k,b为常数且k≠0)的图像可以看做由直线y=k 平移|b|个单位长度得到(当b>0时,向上平移:当b<0时,向下平移) 五、作业教材P127—P128页习题1、2、3 解压密码联系qq1119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网 tt:jiaoxue5u.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网 址:jiaoxue5u.taobao.com 2.同一平面内,不重合的两条直线 1 1 1 1 l : y = k x +b 与 2 2 2 2 l : y = k x + b 当 1 2 k = k 时, 1 2 l // l ;当 1 2 k k 时, 1 l 与 2 l 相交. 3.一次函数 y=kx+b(k,b 为常数且 k ≠0)的图像可以看做由直线 y=kx 平移|b|个单位长度得到(当 b>0 时,向上平移;当 b<0 时,向下平移) 五、作业 教材 P127—P128 页 习题 1、2、3、4、5、6、7 题