1.3相似三角形的性质
1.3相似三角形的性质
回 新课导 根据定义相似三角形具有什么性质? 全等三角形 类比全等三角形的性质, 有哪些性质? 相似三角形还有哪些性 质呢?
全等三角形 有哪些性质? 类比全等三角形的性质, 相似三角形还有哪些性 质呢? 根据定义相似三角形具有什么性质?
目 掌握相似三角形的有关性质,并 能利用这些性质解决一些简单的 问题
掌握相似三角形的有关性质,并 能利用这些性质解决一些简单的 问题
探究活动 相似三角形对应高线的比与相似比的关系: 已知△ABG∽△A"BC’,AD与AD'分别是 对应边BC与B'C上的高 AD AB 求证:AD=AB A C B
探究活动 已知△ABC ∽△A'B'C',AD 与 A'D'分别是 对应边BC 与 B'C' 上的高. 求证: ' ' ' ' AD AB A D A B = 相似三角形对应高线的比与相似比的关系: A B C D B’ D’ C’ A’
结论 相似三角形的对应高线之比等于相似比 A A C B 用推理的形式来表达: △ABC∽△AB'C AD AB A B
相似三角形的对应高线之比等于相似比. A B C D B’ D’ C’ A’ ∵ ΔABC∽ΔA′B′C′ ∴ ' ' ' ' AD AB A D A B = 用推理的形式来表达:
自主思考--比结论 结论:相似三角形对应角的角平分线的 比等于相似比 E B B 说说 结论:相似三角形对应中线的比等于相推理 似比 A 形式 B B D C
自主思考---类比结论 B C A E A′ B′ C′ E′ 结论:相似三角形对应角的角平分线的 比等于相似比. 结论:相似三角形对应中线的比等于相 似比. B D C A B' D' C' A' 说说 推理 形式
类比思考 相似三角形周长的比与相似比的关系 已知:已知△ABC∽△ABC, Ab+bc+ca AB 求证:A"B+BC+C"AHB A′
相似三角形周长的比与相似比的关系: 类比思考 A B C B′ A′ C′ 已知: 求证: ' ' ' ' ' ' A'B' AB A B B C C A AB BC CA = + + + + 已知△ABC ∽△A'B'C
探究活动 相似三角形面积的比与相似比的关系: A c B D AB BC CA AD ABBC′CAAY BC·AD 一=kh=h2 △B·A 2
相似三角形面积的比与相似比的关系: 探究活动 A B C D A' D' B' C
归纳: 相似三角形对应高的比、对应中线的比 对应角平分线的比、周长的比等于相似 比 相似三角形面积的比等于相似比的平方
相似三角形面积的比等于相似比的平方 相似三角形对应高的比、对应中线的比、 对应角平分线的比、周长的比等于相似 比 归纳:
小试牛力 1、两个相似三角形的相似比为2:3, 它们的对应边之比为 周长之 比为 ,面积之比为 2、若两个三角形面积之比为16:9,则 它们的周长之比为
1、两个相似三角形的相似比为2 : 3, 它们的对应边之比为________,周长之 比为_______,面积之比为_________. 2、若两个三角形面积之比为16:9,则 它们的周长之比为_____. 小试牛刀: