4.3因式分解—公式法 单方差公式
4.3 因式分解—— 公式法 1 平方差公式
学习目标: 1、掌握平方差公式的特点 2、会熟练运用平方差公式分解 因式
学习目标: • 1、掌握平方差公式的特点 • 2、会熟练运用平方差公式分解 因式
题情景导入 分解因式 你会做吗? x2-25
一、问题情景导入 分解因式 你会做吗? x 25 2 −
1、(a+b)a-b)=a 这个公三平方差公式 从 整式乘法 (a+b)(a-b) 因式分解 3、因此,a2-b2=(a+b)(a-b)是因式分解 中的一个公式
二、探究新知 1、(a+b)(a-b)=_________. a 2 -b2 这个公式叫____________ 平方差公式 。 2、反过来,a 2 -b2=__________. (a+b)(a-b) 从左边到右边的这个过程叫___________ 因式分解 。 3、因此,a 2 -b2= (a+b)(a-b)是因式分解 中的一个公式。 从左边到右边的这个过程叫___________ 整式乘法
a2-b2=(a+b)(a-b) 特征 用法 口诀 ()2-()2底数和乘以底 数差
a 2 -b 2= (a + b ) ( a – b ) ( )2 -( )2 底数和乘以底 数差 特征 用法 口诀
x2+y2=y2-x2=(y+x)(y-x) 2-y2=(x+y)(xy)
练习: 1、判断下列各式能用平方差公式分解因式吗? X2+y2 -x 2 -y 2 -x 2+y2 X2 -y 2 × × =y2 -x 2=(y+x)(y-x) =(x+y)(x-y)
仔细填一填 (1)9y2=(3y (2)0x2=19、P 25 9 C∠
仔细填一填 ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 4 9 3 25 36 2 1 9 = = = t x y x 5 6 3yt 2 3
03-162(0)21 请同学们归纳运用平方差公式分解因式的关键 步骤: 1)变形:()-()即两个数的平方差 2)套公式:a2-b2=(a+b)(a-b) 意变形时平方的底数为乘积时注意要加
把下列多项式因式分解. 请同学们归纳运用平方差公式分解因式的关键 步骤: 1)变形: ( ) ( ) 即两个数的平方差 2 2 − 2)套公式: a²- b² = (a+b)(a-b) 注意:变形时平方的底数为乘积时注意要加“()”。 ( ) 2 2 4 1 ( ) 2 9a − b 2 1 25-16x 例1
把下列多项式因式分解 )y2-4x2(2)-25x2 (3)3m2-16n2 25
把下列多项式因式分解 ( ) 2 2 1 9y − 4x ( ) 2 2 1− 25x ( ) 2 2 m 16 25 9 3 − n
把(1)9(m+n)2-(m-n)2因式分解 因式分解: 0x+y)2-(y-x)2(2)6a-b)2-9(a+b)
把 因式分解. ( )( ) ( ) 2 2 1 x + y − y − x ( ) ( ) ( ) 2 2 2 16 a −b −9 a + b 因式分解: ( ) ( ) ( ) 2 2 1 9 m + n − m − n