58三元一次方程组 教学目标一 1.理解三元一次方程(组)的概念 2.能解简单的三元一次方程组 数学过程 、情境导入 《九章算术》分为9章,并因此而得名.其中第8章为“方程”,里面有这样一道题目 (用现代汉语表述):3束上等的稻,2束中等的稻,1束下等的稻,共出谷39斗;2束上等 的稻,3束中等的稻,1束下等的稻,共出谷34斗;1束上等的稻,2束中等的稻,3束下 等的稻,共出谷26斗 问上、中、下三种稻,每束的出谷量各是多少斗? 合作探究 探究点一:三元一次方程组的概念 1下列方程组中,是三元一次方程组的是( B a+b+c+d=l m+n=18, 解析:A选项中,方程x2-y=1与xz=2中含未知数的项的次数为2,不符合三元一次 方程组的定义,故A选项不是;B选项中’2不是整式,故B选项不是;C选项中方程组 含有四个未知数,故C选项不是;D选项符合三元一次方程组的定义,故答案为 方法总结:满足三元一次方程组的条件:(1)方程组中一共含有三个未知数;(2)每个方 程中含未知数的次数都是1;(3)方程组中共有三个整式方程 探究点二:三元一次方程组的解法 例2解下列三元一次方程组
*5.8 三元一次方程组 1.理解三元一次方程(组)的概念; 2.能解简单的三元一次方程组. 一、情境导入 《九章算术》分为 9 章,并因此而得名.其中第 8 章为“方程”,里面有这样一道题目 (用现代汉语表述):3 束上等的稻,2 束中等的稻,1 束下等的稻,共出谷 39 斗;2 束上等 的稻,3 束中等的稻,1 束下等的稻,共出谷 34 斗;1 束上等的稻,2 束中等的稻,3 束下 等的稻,共出谷 26 斗. 问上、中、下三种稻,每束的出谷量各是多少斗? 二、合作探究 探究点一:三元一次方程组的概念 下列方程组中,是三元一次方程组的是( ) A. x 2-y=1, y+z=0, xz=2 B. 1 x +1=1, 1 y +z=2, 1 z +x=6 C. a+b+c+d=1, a-c=2, b-d=3 D. m+n=18, n+t=12, t+m=0 解析:A 选项中,方程 x 2-y=1 与 xz=2 中含未知数的项的次数为 2,不符合三元一次 方程组的定义,故 A 选项不是;B 选项中1 x , 1 y , 1 z 不是整式,故 B 选项不是;C 选项中方程组 含有四个未知数,故 C 选项不是;D 选项符合三元一次方程组的定义,故答案为 D. 方法总结:满足三元一次方程组的条件:(1)方程组中一共含有三个未知数;(2)每个方 程中含未知数的次数都是 1;(3)方程组中共有三个整式方程. 探究点二:三元一次方程组的解法 解下列三元一次方程组:
(1)12x-3y+22=5, x+2y+z=13:③ 2x+3y+z=11,① (2)x+y+z=0,② 解析:(1)观察各个方程的特点,可以考虑用代入法求解,将①分别代入②和③中,消 去z可得到关于xy的二元一次方程组;(2)观察各个方程的特点,可以考虑用加减法求解, 用①减去②可消去z,用加上③也可消去z,进而得到关于x、y的二元一次方程组. 解:(1)将①代入②、③,消去x,得 2x+3y=12解得/=2, 4x-y=5 把x=2,y=3代入① 得z=5.所以原方程组的解为y=3, (2)①一②,得x+2y=11.④ ①+③,得5x+2y=9.⑤ ④与⑤组成方程组 5x+2y=9 解得 把x=24代入②,得z=-21 所以原方程组的解是了y 方法总结:解三元一次方程组的难点在于根据方程组中方程的系数特点选择较简便的方 法.(1)一般地,若某一方程的系数比较简单,可选用代入法; (2)若方程组三个方程中某个未知数的系数的绝对值相等或成倍数时,可选用加减消元
(1) z=y+x,① 2x-3y+2z=5,② x+2y+z=13;③ (2) 2x+3y+z=11,① x+y+z=0,② 3x-y-z=-2.③ 解析:(1)观察各个方程的特点,可以考虑用代入法求解,将①分别代入②和③中,消 去 z 可得到关于 x、y 的二元一次方程组;(2)观察各个方程的特点,可以考虑用加减法求解, 用①减去②可消去 z,用①加上③也可消去 z,进而得到关于 x、y 的二元一次方程组. 解:(1)将①代入②、③,消去 x,得 4x-y=5, 2x+3y=13. 解得 x=2, y=3. 把 x=2,y=3 代入①, 得 z=5.所以原方程组的解为 x=2, y=3, z=5. (2)①-②,得 x+2y=11.④ ①+③,得 5x+2y=9.⑤ ④与⑤组成方程组 x+2y=11, 5x+2y=9. 解得 x=- 1 2 , y= 23 4 . 把 x=- 1 2 ,y= 23 4 代入②,得 z=- 21 4 . 所以原方程组的解是 x=- 1 2 , y= 23 4 , z=- 21 4 . 方法总结:解三元一次方程组的难点在于根据方程组中方程的系数特点选择较简便的方 法.(1)一般地,若某一方程的系数比较简单,可选用代入法; (2)若方程组三个方程中某个未知数的系数的绝对值相等或成倍数时,可选用加减消元
法,但要注意必须消去同一个未知数,否则所得的两个新方程虽然都含两个未知数,但由它 们组成的方程组仍含三个未知数,并未达到消元的目的 探究点三:三元一次方程组的应用 3某汽车在相距70km的甲、乙两地往返行驶,因途中有一坡度均匀的小山.该汽车 从甲地到乙地需要2.5h,而从乙地到甲地需要2.3h.假设汽车在平路、上坡路、下坡路的时 速分别是30km、20km、40km,则从甲地到乙地的过程中,上坡路、平路、下坡路的长度各 是多少? 解析:题中有三个等量关系:①上坡路长度+平路长度+下坡路长度=70km;②从甲地 到乙地过程中,上坡时间+平路时间+下坡时间=2.5h;③从乙地到甲地的过程中,上坡时 间+平路时间+下坡时间=2.3h 解:设从甲地到乙地的过程中,上坡路、平路、下坡路的长度分别是xkm,ykm和zkm. 由题意,得203040 解得{y=54, y+x=2 答:从甲地到乙地的过程中,上坡路是12km,平路是54km,下坡路是4km 方法总结:解此题的关键是理解汽车在往返行驶的过程中,如果从甲地到乙地是上坡路 段,那么从乙地到甲地时就变成了下坡路段 三、板书设计 三元一次方程组的概念 三元一次方程组三元一次方程组的解法 三元一次方程组的应用 教学反思 通过对二元一次方程组的类比学习,让学生感受把新知转化为已知、把不会的问题转化 为学过的问题、把难度大的问题转化为难度较小的问题这一化归思想,感受数学知识之间的 密切联系;增强学生的数学应用意识,初步培养学生建立数学模型解决问题的良好思维习惯
法,但要注意必须消去同一个未知数,否则所得的两个新方程虽然都含两个未知数,但由它 们组成的方程组仍含三个未知数,并未达到消元的目的. 探究点三:三元一次方程组的应用 某汽车在相距 70km 的甲、乙两地往返行驶,因途中有一坡度均匀的小山.该汽车 从甲地到乙地需要 2.5h,而从乙地到甲地需要 2.3h.假设汽车在平路、上坡路、下坡路的时 速分别是 30km、20km、40km,则从甲地到乙地的过程中,上坡路、平路、下坡路的长度各 是多少? 解析:题中有三个等量关系:①上坡路长度+平路长度+下坡路长度=70km;②从甲地 到乙地过程中,上坡时间+平路时间+下坡时间=2.5h;③从乙地到甲地的过程中,上坡时 间+平路时间+下坡时间=2.3h. 解:设从甲地到乙地的过程中,上坡路、平路、下坡路的长度分别是 xkm,ykm 和 zkm. 由题意,得 x+y+z=70, x 20+ y 30+ z 40=2.5, z 20+ y 30+ x 40=2.3. 解得 x=12, y=54, z=4. 答:从甲地到乙地的过程中,上坡路是 12km,平路是 54km,下坡路是 4km. 方法总结:解此题的关键是理解汽车在往返行驶的过程中,如果从甲地到乙地是上坡路 段,那么从乙地到甲地时就变成了下坡路段. 三、板书设计 三元一次方程组 三元一次方程组的概念 三元一次方程组的解法 三元一次方程组的应用 通过对二元一次方程组的类比学习,让学生感受把新知转化为已知、把不会的问题转化 为学过的问题、把难度大的问题转化为难度较小的问题这一化归思想,感受数学知识之间的 密切联系;增强学生的数学应用意识,初步培养学生建立数学模型解决问题的良好思维习惯.