第二章 范数理论 主要内容 一、向量范数 二、矩阵范数 三、范数的应用 This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
第一节向量范数 主要内容: 1·向量范数的定义及几种常见的向量范数 2向量范数的等价性 ced by tri
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
一、向量范数的定义 对于向量空间C”上的任意向量x,对应一个实值函数x 如果函数‖·CR满足: 1)正定性x≥0且=0台x=0 2)齐次性ax=ar,aeF 3)三角不等式x+川≤+川 则称为向量x的范数。 范数的性质:)上=x (2x-y川≤x-川 his do d by trial f Print2Flash
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
实例1在向量空间C中,向量的长度是一种向量范数, 称为2-范数或欧氏范数。 2=(2k,)2 x=(x,x2,…,xn)∈Cn 证明易验证条件(i)和(ii)成立,现验证条件(iii)也 成立。下面用到了Chauchy-Schwarz不等式。 +y=(x+y.x+y)=(x.x)+(x.y)+(y.x)+(y.y) ≤x+2,y,+y6=(,+yL 两边开方即得证
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
实例2在向量空间C中,向量分量的最大模是一种 向量范数,称为∞-范数。 lxl。=maxx, 证明 范数定义中的条件()显然成立, 现验证条件(ii)和(iii)也成立 x=maxlax,=lal max,=la x+yl。=maxx,+y, s max(+=max,+max=+ 反例:设x∈R,若令x=x2, 显然,它满足范数定义中的正定性,但不满足齐 次性,因此它不是R中的范数。 his do is produced by trial vers on of Print2Flash.Visit matio
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
定理对x=(x,x2,…,x,)eC”C"→R分别定义三个函数 k 1一范数: 2=(x,)月 2-范数(或Euclid范数) xl。=max,l ∞一范数(或最大值范数)。 它们均构成范数。 说明:在同一个向量空间,可以定义多种向量范数,而对 于同一个向量,不同定义的范数,其大小可能不同。 x=1,2.-3y,=6L,=4=3
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
引理2.1.1如果实数p21,g21,+-1 p g 则对于任意非负实数a,b,成立b≤a+ p g 证若ab-0,显然结论成立。下面只讨论a>0且b>0的情况。 考虑函数 1P 1-9 0(t)= (0<t<+0) p g tP+9-1 0'(t)= p()≥p(1)=1(0<1<+0) 11 令t=a9bp 即证 Is pro ced by trial v f Print2Flash Visit
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
引理2.1.2(H6lder不等式) 如果实数p≥1g≥1+1-1则对于任意数组 p q a=(a1,a2,,an),b=61,b2,…,bn) 成立a,bsa,r运b
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
证:令a,w=包 ,其中 代入上述不等式,则有 m r-) las mn p m q nd 交asm2ar+2s” m2立a2 Iby trial of Print2Flash
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
Minkowski不等式:设 a=[a,a,…,a],b=[b,b,…,bn]∈C" 则对任何p之1都有 ②a+门2+a
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information