习题解答 第十章一元多项式与整数的因式分解 习题10-1 1.计算(x2+ax-b)(x2-1)+(x2-ax+b)(x2+1). 解:2x4-2ax+2b. 2.计算多项式x3+2x2+3x-1与3x2+2x+4的乘积 解:3x5+8x4+17x3+11x2+10x-4. 3.设 f(x)=3x2-5x+3, g(x)=ax(x-1)+b(x+2)(x-1)+cx(x+2), 试确定a,b,c,使f(x)=g(x). 解:取x=-2,得a=;取x=0,得b=-3,取x=1,得c= 4.设f(x),g(x)和h(x)都是实系数多项式,证明:如果 f2(x)=xg2(x)+xh2(x), 那么 f(x)=g(x)=h(x)=0. 证明:如f(x)≠0,则左式的次数为偶数,而右式的次数为奇数,矛盾,故f(x)=0.从而 g2(x)+h2(x)=0. 又,g(x),h(x)皆为实系数多项式,从而g2(x),h2(x)的首项系数都是非负数,而这两个数之和为零,故 g(x),h(x)的首项系数都是零,从而g(x)=h(x)=0. 习题10-2 1.用g(x)除f(x),求商q(x)与余式r(x): (1)f(x)=x4+4x2-x+6,g(x)=x2+x+1; (2)f(x)=x3+3x2-x-1,g(x)=3x2-2x+1. 解:(1)q(x)=x2-x+4,r(x)=-4x+2. (2)q(x)=(3x+11),r(x)=(x-2). 2.m,p,q适合什么条件时,有 (1)x2+mx+1]x3+px+q; (2)x2+mx+1|x4+px2+q. 解:(1)p=1-m2,q=-m. 1
% &'() % & 10–1 1. op (x 2 + ax − b)(x 2 − 1) + (x 2 − ax + b)(x 2 + 1). ): 2x 4 − 2ax + 2b. 2. opI~ x 3 + 2x 2 + 3x − 1 3x 2 + 2x + 4 . ): 3x 5 + 8x 4 + 17x 3 + 11x 2 + 10x − 4. 3. f(x) = 3x 2 − 5x + 3, g(x) = ax(x − 1) + b(x + 2)(x − 1) + cx(x + 2), <fX a, b, c, N f(x) = g(x). ): Q x = −2, O a = 25 6 ; Q x = 0, O b = − 3 2 , Q x = 1, O c = 1 3 . 4. f(x), g(x) u h(x) 2!syI~, ^_: 45 f 2 (x) = xg2 (x) + xh2 (x), [# f(x) = g(x) = h(x) = 0. '(: 4 f(x) 6= 0, y.y, Jy.y, , 3 f(x) = 0. IJ g 2 (x) + h 2 (x) = 0. C, g(x), h(x) .syI~, IJ g 2 (x), h2 (x) !~sy2!zzy, Jk@vytu.{, 3 g(x), h(x) !~sy2!{, IJ g(x) = h(x) = 0. % & 10–2 1. X g(x) " f(x), L# q(x) m r(x): (1) f(x) = x 4 + 4x 2 − x + 6, g(x) = x 2 + x + 1; (2) f(x) = x 3 + 3x 2 − x − 1, g(x) = 3x 2 − 2x + 1. ): (1) q(x) = x 2 − x + 4, r(x) = −4x + 2. (2) q(x) = 1 9 (3x + 11), r(x) = 10 9 (x − 2). 2. m, p, q $%"#FGS, $ (1) x 2 + mx + 1 | x 3 + px + q; (2) x 2 + mx + 1 | x 4 + px2 + q. ): (1) p = 1 − m2 , q = −m. (2) ( m = 0 p = 1 + q k ( p = −m2 + 2 q = 1 · 1 ·