矩阵的秩 定义设在矩阵A中有一个不等于0的阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则称D为 矩阵A的最高阶非零子式,r称为A的秩.记作7(A).规定零矩阵的秩为0. 2.T(4)=A的行秩(矩阵A的行向量组的秩)=A的列秩(矩阵A的列向量组的秩). 基本结论 (1)A的秩r(A)就是A中不等于0的子式的最高阶数: (②)矩阵A中有一个不等于0的s阶子式=r(4)≥s (3)若矩阵A中所有t阶子式全为零=r(A)≥g ()若A为m×n矩阵,则r(A)≤mm{m,n: (⑤)r(4)=r(AT): (6)A为非零矩阵=r(4)≥1: ()阶梯形矩阵的秩等于其非零行的个数: (⑧)若A~B,则(A)=r(B),即初等变换不改变矩阵的秩: (O)若PQ可逆,r(PAQ)=RA: (10)mar{r(A,r(B}≤r(A,B剧≤r(A)+r(B),特别地,当B=B为列向量时有,r(A)≤r(A,3)≤ r(4)+1 (11)r(A+B)≤r(A)+r(B): (12)r(AB)<min(r(A).r(B)) (13)若Amxn Bnxl=0,则r(A)+r(B)≤ (14)r(4TA)=r(4) (15)设分块矩阵D= (0B人则D)≥ra)+rB: AC) n=r(4)=n (16)若n阶方阵A的伴随矩阵为A”,则r(4)= 1=r(A)=n-1 0=rA)<n-1 (17)若向量组A可由向量组B线性表出,则r(A)≤r(B).特别地,等价的向量组具有相同的秩 重要定理 例1r(AB)≤min{r(4,r(B)} 例2证明:r(A+B)≤r(A)+r(B). 证令设a,…an为A的列向量组,房,…,为B的列向量组,则1十,…,0a+的列向量组 设(=s,r(B)=七,不妨设1,…,a,为A的列向量组的极大线性无关组,,…,品,为B的列向量组的极 大线性无关组.对任意a:+品,因为a可以由a1,…,a,线性表示,3可以由品1,·,线性表示,所以a+员 第1页
› ù ½¬ 3› A•kòáÿu0rf™D,Ö§kr + 1f™(XJ3{)u0, K°Dè › AÅpö"f™, r°èAù.Pär(A). 5½"› ùè0. 2. r(A) = A 1ù(› A1ï˛|ù)= A ù(› Aï˛|ù). ƒ(ÿ (1) Aùr(A)“¥A•ÿu0f™ÅpÍ; (2) › A•kòáÿu0sf™ r(A) ≥ s; (3) e› A•§ktf™è" r(A) ≥ s; (4) eAèm × n › , Kr(A) ≤ min{m, n}; (5) r(A) = r(AT ); (6) Aèö"› r(A) ≥ 1; (7) F/› ùuŸö"1áÍ; (8) eA ∼ B, Kr(A) = r(B), =–CÜÿUC› ù; (9) eP, Qå_, r(P AQ) = R(A); (10) max{r(A), r(B)} ≤ r(A, B) ≤ r(A) + r(B), AO/, B = βèï˛ûk, r(A) ≤ r(A, β) ≤ r(A) + 1; (11) r(A + B) ≤ r(A) + r(B); (12) r(AB) ≤ min{r(A), r(B)}; (13) eAm×nBn×l = 0, Kr(A) + r(B) ≤ n; (14) r(AT A) = r(A); (15) ©¨› D = A C 0 B ! , Kr(D) ≥ r(A) + r(B); (16) enê Aäë› èA∗ , Kr(A∗ ) = n r(A) = n 1 r(A) = n − 1 0 r(A) < n − 1 (17) eï˛|Aådï˛|BÇ5L—, Kr(A) ≤ r(B). AO/, dï˛|‰kÉ”ù. á½n ~1 r(AB) ≤ min{r(A), r(B)}. ~2 y²: r(A + B) ≤ r(A) + r(B). y -α1, · · · , αnèAï˛|, β1, · · · , βnèBï˛|, Kα1 + β1, · · · , αn + βn ï˛|. r(A) = s, r(B) = t, ÿîα1, · · · , αsèAï˛|4åÇ5Ã'|, β1, · · · , βtèBï˛|4 åÇ5Ã'|. È?øαi+βi , œèαiå±dα1, · · · , αsÇ5L´, βiå±dβ1, · · · , βtÇ5L´, §±αi+βi 1 1 ê
可以由a1,…,a,月1,…,月线性表示,因此a1+月,…,an+月n可以由a1,…,,月1,…,月线性表示.因 此r(A+B)≤R(A+R(B). 例3设分块矩阵D= (AC),则rD≥(A+rB 0 B 例4设A为m×n矩阵,B为n×矩阵.证明:如果AB=O,那么r(A)+r(B)≤n. 证明:设B的列向量组为a1,a2,…,an,则AB=A(a1,2,…,an)=(4a,Aa2,…,Aan)=0,因 此4a1=Aa2==Aan=0,即a1.a …,n为线性方程组=0的解若=则,2,,n可 以由n-r个解向量线性表示,因此R(B)≤n-r于是R(A)+R(B)≤n. n r(A)=n 例5证明:如果A是n×n矩阵(n≥2),那么r(4') (A)=n- 0,r(A)<n-1 证1)当r(A)=n时,A°=14A-1,可逆,故r(A)=n 2当r(4)=n-1时,A4"=4E=0.因为r(4)+r(4)≤n,即r(4)≤n-r(4=1.若r(4")= 0,则A°=(A)=O,于是A=0,即A的所有n-1阶子式均为零,与r(A)=n-1矛盾,故r(A)=1. 3)当r(4)<n-1时,A的所有n-1阶子式均为零,由伴随矩阵(4)=(4)的定义知A°=0,即r(A)= 例61)设A为m×n矩阵.且42=A.证明:4}+r(A-E)=n: (②设A为阶方阵满足AP=E,E为3阶单位矩阵、证明: (③)设A,B为n×n矩阵,A -)+r+A=m A,B 二B且E-A+)可逆,证明:=(B时 (④)设A为n×n矩阵,证明:A2=E当且仅当r(A+E)+r(A-E)=四 证(1) (2)由A3=E得A可逆且(A+2E)[(42-2A+4E)=E.于是A+2E可逆.由A3=E得A3-E=0, 因此(A-E)(42+A+E)=0.于是r(4-E)+r(A2+A+E)≤n.又因为r(A-E)+r(A2+A+E)≥ =r(A2+2A=r(A(A+2E.因为A,A+2E可逆,所以A(A+2E)可逆,因 -trA2m袋a-+ag (3) 第2页
å±dα1, · · · , αs, β1, · · · , βtÇ5L´, œdα1 +β1, · · · , αn +βn å±dα1, · · · , αs, β1, · · · , βtÇ5L´. œ dr(A + B) ≤ R(A) + R(B). ~3 ©¨› D = A C 0 B ! , Kr(D) ≥ r(A) + r(B); ~4 Aèm × n› , Bèn × t› . y²: XJAB = O, @or(A) + r(B) ≤ n. y²: Bï˛|èα1, α2, · · · , αn, KAB = A(α1, α2, · · · , αn) = (Aα1, Aα2, · · · , Aαn) = 0, œ dAα1 = Aα2 = · · · = Aαn = 0, =α1, α2, · · · , αnèÇ5êß|Ax = 0).eR(A) = r, Kα1, α2, · · · , αnå ±dn − rá)ï˛Ç5L´, œdR(B) ≤ n − r.u¥R(A) + R(B) ≤ n. ~5 y²: XJA¥n × n› (n ≥ 2),@or(A∗ ) n, r(A) = n 1, r(A) = n − 1 0, r(A) < n − 1 y 1)r(A) = nû,A∗ = |A|A−1 ,å_,r(A∗ ) = n 2)r(A) = n − 1û,AA∗ = |A|E = O.œèr(A) + r(A∗ ) ≤ n, =r(A∗ ) ≤ n − r(A) = 1. er(A∗ ) = 0,KA∗ = (Aji) = O,u¥Aij = 0,=A§kn − 1f™˛è",Ür(A) = n − 1 gÒ,r(A∗ ) = 1. 3)r(A) < n−1û,A§kn−1f™˛è", däë› (A∗ ) = (Aij )½¬A∗ = O,=r(A∗ ) = 0. ~6 (1) Aèn × n› , ÖA2 = A. y²: r(A) + r(A − E) = n; (2) Aènê ˜vA3 = E, Eè3¸†› . y²: r(A − E) + r(A2 + A + E) = n; (3) A, Bèn × n› , A2 = A, B2 = B ÖE − (A + B)å_, y²: r(A) = r(B); (4) Aèn × n› ,y²: A2 = E Ö=r(A + E) + r(A − E) = n; y (1) (2) dA3 = EAå_Ö(A + 2E)[ 1 9 (A2 − 2A + 4E)] = E. u¥A + 2Eå_.dA3 = EA3 − E = 0, œd(A − E)(A2 + A + E) = 0. u¥r(A − E) + r(A2 + A + E) ≤ n. qœèr(A − E) + r(A2 + A + E) ≥ r(A − E + A2 + A + E) = r(A2 + 2A) = r(A(A + 2E)). œèA, A + 2Eå_, §±A(A + 2E)å_, œ dr(A(A + 2E)) = n, =r(A − E) + r(A2 + A + E) ≥ n. n˛r(A − E) + r(A2 + A + E) = n. (3) 1 2 ê
0 02E 即令B= ()a-(日-")-(6)o-(--) /E O /E0】 0 则BBE-A0 必要性 0E+A -e+利(45)-*-对( 02E --20 所以E-A2=0即A2=E. 例7证明:A1=4-1,其中A是n×n矩阵(n≥2). 证由AA”=4E得AA|=AA|=IAE=4P·E=Am (1)当14≠0时.41==14-1: ②)当1A=0时,)A=O时,A=0,于是A1=1An-1:)r(A)>0时,AA°=1AE=0.因r(A)+ r(A)≤n,故r(4)<n,即A1=0,也有A1=4n- 例8设A=(a)s×n,B=()nxm,证明;r(AB)2r(A)+r(B)-n 运明法-设r利=n=a4国=r存在可证矩珠PQ度PAQ-(8)令gB- Bm,因为PQ可逆,所以 B(m-n)xm r=rAB=rP4QQB.而P4AQQB=(E0)(Bx)=(Bxm) 00 B 0 于是r(Bxm)=n但rQB=,这说明Bm-xm中线性无关的行数为2-n,而总行数为n-n, 故r2-r≤n-n,即r之n+2-n ((:)-(8) c-(5品)则g≥r+,又@=n+ra.所+ra2+@ 例9设A是一个n阶矩阵且秩r(A)=1. ()证明:A=aB,其中a,B为n维行向量,且当8a≠0时,A相似于对角阵, (②)若A的第一行和第一列的元素全为1,求A及A10, 证明()令A B2 ,其中,…,品为A的行向量组.因为r(A)=1,所以存在每个,不妨 1 设B=≠0,且对任意月,存在数a使得3=a8,2≤j≤n.于是A 令a=(1,a2,…,n 第3页
(4) ø©5 E − A 0 0 E + A ! −−−−→ c2 + c1 E − A E − A 0 E + A ! −−−−→ r2 + r1 E − A E − A E − A 2E ! −−−−−−−−−−−−−−→ r1 − 1 2 (E − A) × r2 0 0 E − A 2E ! −−−−−−−−−−−−−−→ c1 − c2 × 1 2 (E − A) 0 0 0 2E ! =-P1 = E 0 E E ! , P2 = E − 1 2 (E − A) 0 E ! , Q1 = E E 0 E ! , Q2 = E 0 − 1 2 (E − A) E ! . KP2P1 E − A 0 0 E + A ! Q1Q2 = 0 0 0 2E ! , §±r(A + E) + r(A − E) = n. 7 á5 E − A 0 0 E + A ! −−−−→ r1 + r2 E − A E + A 0 E + A ! −−−−→ c2 + c1 E − A 2E 0 E + A ! −−−−−−−−−−−−−−→ r2 − 1 2 (E + A) × r1 E − A 2E − E−A 2 2 − A 0 ! −−−−−−−−−−−−−−→ c1 − c2 × 1 2 (E − A) 0 2E − E−A 2 2 0 ! . §±E − A2 = 0, =A2 = E. ~7 y²: |A∗ | = |A| n−1 , Ÿ•A¥n × n› (n ≥ 2). y dAA∗ = |A|E|A||A∗ | = |AA∗ | = ||A|E| = |A| n · |E| = |A| n. (1)|A| 6= 0û,|A∗ | = |A| n |A| = |A| n−1 ; (2)|A| = 0û, (i)A = Oû,A∗ = O, u¥|A∗ | = |A| n−1 ;(ii)r(A) > 0û,AA∗ = |A|E = O.œr(A) + r(A∗ ) ≤ n,r(A∗ ) < n,=|A∗ | = 0,èk|A∗ | = |A| n−1 ~8 A = (aij )s × n, B = (bij )n×m, y²; r(AB) ≥ r(A) + r(B) − n. y² {ò r(A) = r1, r(B) = r2, r(AB) = r,3å_› P, Q¶P AQ = Er1 0 0 0 ! , -Q−1B = Br1×m B(n−r1)×m ! , œèP, Qå_, §± r = r(AB) = r(P AQQ−1B), P AQQ−1B = Er1 0 0 0 ! Br1×m B(n−r1)×m ! = Br1×m 0 ! , u¥r(Br1×m) = r, r(Q−1B = r2, ˘`²B(n−r1)×m•Ç5Ã'1Íèr2 − r, o1Íèn − r1, r2 − r ≤ n − r1, =r ≥ r1 + r2 − n. { E 0 0 AB ! −−−−−−−−→ r2 + r1 × A E 0 A AB ! −−−−−−−−→ c2 − c1 × B E B A 0 ! . -C = E 0 0 AB ! . Kr(C) ≥ r(A) + r(B), qr(C) = n + r(AB), §±n + r(AB) ≥ r(A) + r(B). ~9 A¥òán› Öùr(A) = 1. (1) y²: A = α 0β,Ÿ•α, βènë1ï˛, Öβα0 6= 0û, AÉquÈ ; (2) eA1ò1⁄1òÉè1, ¶A9A100 . y² (1) -A = β1 β2 . . . βn , Ÿ•β1, · · · , βnèA1ï˛|. œèr(A) = 1, §±3záβi , ÿî β = β1 6= 0, ÖÈ?øβj , 3Íaj¶βj = ajβ, 2 ≤ j ≤ n. u¥A = 1 a2 . . . an β, -α = (1, a2, · · · , an), 1 3 ê