第三章 矩阵分析 一、矩阵序列 二、矩阵级数 三、矩阵函数 四、矩阵的微分和积分 五、矩阵分析应用举例 理工大学 This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
矩阵序列与矩阵级数 矩阵的谱与谱半径 ·矩阵的谱半径:矩阵范数在特征值估计中的应用 设AeC”,方,元为A的个特征值,称集合 {02…2,} 为矩阵A的谱,记作G(4) 称 p(A)=max 为矩阵A的谱半径 This documentis produced bytrialversinofPVisit www.prinashcmformoreinfomio
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
3.1.矩阵序列 定义1设矩阵序列{A)}∈Cm”,其中 A=(a,)m,如果mn个数列 1ima,=a,i=1,2,…,mj=1,2,,n k)0 则称矩阵序列{A}收敛于A=(a,)mn或称A 为矩阵序列{A)}的极限。记为 IimA)=A或A→A(k→0) 否则称为发散。 This docur at is produced by trial versi on of Print2Flash.Visit www.print2flash.com for mo nformatio
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
例 如果设4=[a,]eC22,其中 ,=+1 ,a:=r01),a=- k2+k 那么 s作 Print2Flash
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
定理3.1矩阵序列{A}收敛于A的充分 必要条件是 lim44)4=0 k)0 其中为任意一种矩阵范数。 证明取矩阵范数 14L=2a i=1i=1 必要性:设 lim 4()=A=(an) →00 his doc uced by trial ver of Print2Flash.Visit w
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
那么由定义可知对每一对i,i都有 ingo0 (i=1,2,…,;j=1,2,…,n) 从而有 m22a,-o0 k0 i=1j=1 上式记为 lim4-=0 d by trial of Print2Flash Visit
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
充分性:设 ml4-A-m22a,“-a,=0 k0=1j=l 那么对每一对i,j都有 imaa0 (i=1,2,…,m;j=1,2,…,n) 即 lim d,=d (i=1,2,…,m;j=1,2,…,n) This docur t is produced by trial version of Print2Flash.Visit www.print2flash.com for more information
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
故有 limA)=A=(a) k)00 现在已经证明了定理对于所选取的范数成 立,如果4是另外任意一种范数,那么 由范数的等价性可知 dA-A≤4-A≤d,A-A 这样,当m4-A=0 时同样可得im4-A-0 因此定理对于任意一种范数都成立
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
推论:若imA)=A,则m4=4, 其中为任意一种矩阵范数。反之不成立。 同数列的极限运算一样,关于矩阵序列的极 限运算也有下面的性质。 (1)一个收敛的矩阵序列的极限是唯一的。 (2)设1imA)=A,limB)=B →0 →00
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
则 limaA(k)+bB(k)=aA+bB,a,bEC →00 (3)im 4()=4,lim B()=B, 其中A)∈Cm,B)∈Cg那么 lim A(R)B()=AB k0 (4)设1imA)=A,其中 k→0 A)∈Cmx",P∈Cmwm,Q∈CmxM ed by trial v of Print2Flash Visit
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information