习题解答 第三章线性方程组与线性子空间 习题3-1 1.用消元法解下列线性方程组 2x1-2+4+3z4=-4 1+32-+4红4=6 21-22+34-4=3 3x1 +2x3+2红4=3 x1-2x2+3x3-x4=-6 (2) 1+2-3+工4=7 2I1-I2+工3 =1 2++x4=3 解()1=-5,2=5,3=8,4=1 (2)x1=4,2=7,3=0,4=-4. 2.分别用矩阵的初等行变换和列变换将下列矩阵化为行阶梯矩阵和列阶梯矩阵 2 y 2 4 2031-2 23-12 5 /1 59 0 -54 四 -51 021-12 1-13-17 /3 2 /300 0 0 24 0 解() 18 21 032 0 0 22 0 /1520 1 000 021-12 3 -2000 (②)004-412 与1-1000 00000 01 -800 1-1600/ 3.证明:线性方程组的第二类,第三类初等变换把线性方程组化成与它同解的线性方程组。 证明:(略) 4.证明推论1.4 证明:对矩阵AT应用推论1.3,则AT可以经过一系列初等行变换化成简化行阶梯矩阵将上述变 换施行于矩阵A的列上,就将A化成简化列阶梯矩阵 1
3–1 1. D-t&@AB: (1) 2x1 − x2 + x3 + 3x4 = −4 x1 + 3x2 − x3 + 4x4 = 6 2x1 − 2x2 + 3x3 − x4 = 3 3x1 + 2x3 + 2x4 = 3 (2) x1 − 2x2 + 3x3 − x4 = −6 x1 + x2 − x3 + x4 = 7 2x1 − x2 + x3 = 1 x2 + x3 + x4 = 3 : (1) x1 = −5, x2 = 5, x3 = 8, x4 = 1. (2) x1 = 4, x2 = 7, x3 = 0, x4 = −4. 2. ]^\V =J:=Jv]^L" yp]^:yp]^: (1) 3 2 1 0 4 2 1 4 4 −3 2 0 3 1 −2 2 3 −1 2 5 ; (2) 1 5 2 0 1 3 −5 4 2 7 1 −5 1 1 3 0 2 1 −1 2 1 −1 3 −1 7 . : (1) 3 2 1 0 4 0 − 1 3 10 3 4 − 17 3 0 0 −11 −15 18 0 0 0 17 11 − 16 11 B 3 0 0 0 0 2 4 0 0 0 2 1 3 2 0 0 2 2 − 10 3 − 17 18 0 . (2) 1 5 2 0 1 0 2 1 −1 2 0 0 4 −4 12 0 0 0 0 0 0 0 0 0 0 B 1 0 0 0 0 3 −2 0 0 0 1 −1 0 0 0 0 1 −8 0 0 1 1 −16 0 0 . 3. ST: t&@AB=bk, =4k\V=JNt&@ABL*B8C-t&@AB. : (i) 4. ST^# 1.4. : ]^ AT ,^# 1.3, J AT >$jNHj\V =JL*kL yp]^. vyS= Jl <]^ A y, ov A L*kLyp]^. · 1 ·